AD-A124 398 A SYNTACTIC APPROACH AND vLSI RRCHITECTURES FOR SEISMIC
SIGNRL CLASSIFICRTION(U) PURDUE UNIV LAFAYETTE IN
SCHOOL OF ELECTRICRL ENGINEERING H LIU ET AL. JAN 83
UNCLASSIFIED N80014-79-C F/G 8711

7’

Yy
. TR AT 'Y
e ewaeeR e e A .~ PRI * b
A [T WP SACTEI LRI AN § IR PR RAT FEMIIANRINRLE Y i) .,
LK A
'
) _
LT . .
r s. :
[P . .
e) . . |
[~ o _ .
Ve) . - s .
.
I\b . -
W et ,
" N - |
v r 1f . .
¥) , -
) :
14 . Ai
vk 'A . ‘..
A | :
¥ :
L’ .
. . :
by :
\' . 4
[- 4 .
. u
I
onl

Ol

% L
0

-
i
!
¥
-

i

i..~ _ N)

Ti . ,.1«1 \“ﬁt .n
% ST .

v _ | :

-.h. & | —- .
v “ m . |
: o P b B co. m m ... "
: ol i N - _— & . :
; e ,. ..
; - & o
. R - 3 g s
| a 2
,, Jdaa < -
. 2 — M 5 _. -
| : : “ n P
" hhmmmmnuuw = omu m L y
v. n — w *I. .--
3 ,.-- v . r
Ml = S 51 o
.... — -— 2 m W,»- 7". .
v 1S amp— et 14 m " |
E |
...“ “ ———— ——— . .*.ﬁ
. .

.... : | ‘k
o
nl... _ l‘l] -.. -‘
N

A

4

¢

i

5

4

o

Al I N Gt it T PINAEN o ~ T ¥ - L Jat St bt vadicha gl i St s e T T e T e e ot e e e e
.........................
A T e s e T T T T e T T e e e T T T e e, B N TP I APGL S R " . .
- - ~ “ - - >
. IR
-, e w .
T . -t e
R -
. TR Z

A SYNTACTIC APPROACH AND VLSI ARCHITECTURES

a0

(@p)

(A

¢ . FOR SEISMIC SIGNAL CLASSIFICATION
(A,

|

<

Hsi-Ho Liu and K. S. Fu
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

™ -

. FEB 141983

A

January 1983 J Ej

This document has been PPpro
for gubli.c release and soli‘ its ved
‘_dxstnbutxon is unlimited, ___J

Q.
-
’ 4
(TN This work was supported by ONR Contract N00O14-79-C-0574 and the” NSF-Geant
a— ECS_80-16580. _
——
| 5T

.............

MR an R gh 4 T
PRPRIPE Y SRR

e SR aracary o) A
R SRR)
R IR A

3%

,._'_.'..v_
) »
s

Ty
cd

L0
AN

R e
l

PRI
e

3

S O LR N |
&S .

ol

SECURITY CLASSIFICATION OF THIS PAGE (When Dlll‘Ellleled)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORYT NUMBER 2. GOVY ACCESSION NO.

4. TITLE (and Subtitle)]

A SYNTACTIC APPROACH AND VLSI ARCHITECTURES
FOR SEISMIC SIGNAL CLASSIFICATION,

3. RECIPIENT'S CATALOG NUMBER

- —

S. TYPE OF REPORT 8 PERIOD COVERID

Technicals

6. PERFORMING OG. RILPORY NUMBER

7. AUTHOR(S)

Hsi-Ho Liu and K. S. Fu

8. CONTRACT OR GRANT NUMBER(s) 1

ONR N00014-79-C-0574,
F VA%

9. PERFORMING O_RGANllATION NAME AND ADDRESS
Purdue University

School of Electrical Engineering
West Lafayette, IN 47907

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 8 WORK UNIT NUMBE RS

11. CONTROLLING OFFICE NAME AND ADDRESS
Department of the Navy

12. REPORT DATE

January 1983

Office of Naval Research
Arlington, VA 22217

13. NUMBER OF PAGES

208

14. MONITORING AGENCY NAME & ADDRESS(If ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)]
unclassified
“15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release: distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract ontered In Block 20, If different from Report) - -
Approved for public release: distribution unlimited.
. — e -
18. SUPPLEMENTARY NOTES
. e

19. KEY WORDS (Continue on reverse side if necessary and jdentify by block number)

B e TR, - - 4

20. SASTRACT (Contlnue on roverse side H uesessary ond identily by block number) .

. /&ﬁﬁyntactic pattern recognition has been applied to seismic classification
in this study. Its performance is better than many existing statistical

approaches. VLSI architectures for syntactic seismic recognition are

also proposed which take advantage of parallel processing and pipelining so

that a constant time complexity is attainable when processing large amount

of data. Application of syntactic pattern recognition to damage assessment

is also proposed and demonstrated on a set of experimental data. —— - v

/7

DD, 523‘;3 1473 EDITION OF 1 NOV 65 15 OBS0L L Tt

":l’Cllﬂl;-‘;.?-l-‘x';;il—’-l.("_AT |:,-N OF TR0 A Whoe Dinter 4 tegeds

LIPS A I Ul A R S I -;._.‘¥-;,.‘_‘J

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

\%}Seismic waveforms are represented by strings of primitives, i.e.,
: sentences, in this study. String-to-string similarity measures based on
s both distance and likelihood concepts are discussed along with the symmetric
]! property and the hierarchy. A fixed-length segmentation is used in the
experiment. Encouraging results comparable to those of the best statistical
approaches are obtained with only two very simple features, namely, zero-
crossing count and log energy. Primitives are automatically selected using
a hierarchical clustering procedure and two decision criteria.

!I Nearest-neighbor decision rule and finite-state error-correcting
R parsers are used for classification. For error-correcting parsing, finite-
Jo state grammars are first inferred from the training samples. These two
. approaches have same performance in the experiment, whereas the nearest-
. neighbor rule is faster in speed.

[Attributed grammar and its parsing are also proposed for seismic
recognition, which could reduce the complexity and increase the descriptive
flexibility of the pattern gramamrs. VLSI architectures are proposed for
fast recognition of seismic waveforms. Three systolic arrays perform the
feature selection, primitive recognition and string distance computation.
These individual units can be used in other similar applications.

Although this study is on seismic classification, it can be extended
| or modified to tackle other signal recognition problems.

i Tovr oy e e
T dn e

> f,Y .—'rv—r',-.n
. -

SECURITY CLASSIFICATION OF Yu'® AGE(When Date Entered)

. .
- “a . A he
s e mTa.ala A 2 =

TS I T T T T SRR N R O, S A SO e 1
"::-'("‘ -------------------------
= M /
- . .0
‘. .. i e g f]
g 1.7 GRA&L
e DTIC Tas IS
e iv Uianmoune #d 0
- custiflcation. |
o ——
L
- bistrityticn/
: e
Availabilfty Codes
o Avsil anctor

TABLE OF CONTENTS Dist ' Fiesoml |
A
i ! i
Page
LIST OF TABLE....coiiiiiiiiiiri i et eee st e eernceeansrennsare s reeeesesannnes vii
LIST OF FIGURES ..ottt ettt ee e e e ee eerebeeaansnnn e e e e viii
ABSTRACT ...ttt er e ea s e e e e e erna e saar e bbtaet s eetresansenenees xi
CHAPTER I - INTRODUCTIONcciitiiiiiiiiiiiei et e ee e v ees 1
. 1.1 Statement of the Problemc.ccoooiiiiiiiiiii e, 1
- 1.2 Literature Survey.............ccoveiiiiiiiiiiiiii e, 7
L 1.2.1 Syntactic Pattern Recognition and
; Digital Signal Processingccceevevvvieeiiiiieiinneeeennenns 7
] 1.2.2 Pattern Recognition and
= Seismic Signal Analysis.......ccoocciviviiniiiviiinriii e 13
o 1.3 Organization of ThesSiSccooviiiieeiveiieee oo 17

CHAPTER II - SIMILARITY MEASURES AND RECOGNITION

PROCEDURES FOR STRING PATTERNS......c...coovvivvivieinnn, 19
.1 Introduction.......cooooviiiiiii 19
2.2 Similarity Measures of Strings............c.ccoiiiiiiiiiiin)|
2.2.1 Similarity Measures Based on Distance Concept............ 21
2.2.2 Similarity Measures Based on Likelihood Concept 41
2.3 Error-Correcting Parsing...........c.ccociviiiiiiiiiiiiiiie 45
2.3.1 Minimum-Distance Error-Correcting Parsing

Algorithm. ..., 46

2.3.2 Maximum-Likelihood Error-Correcting Parsing
AlgOTIthIN ..ot 52
2.4 Recognition Procedures for Syntactic Patterns 56
2.5 ConCIUSION. ... 58

-~ R T I . e e S .) . . .
I IR PRI R TIPS UL S WS, B T SRS, AU S = S S U S LIy B alixta’a PN U RN NS VI et

rd
’ v
CHAPTER III - APPLICATION OF SYNTACTIC PATTERN
RECOGNITION TO SEISMIC CLASSIFICATION.......ccoooereeiivenen 59
3.1 INtrodUction ..o e e e e e seeaa e 59
3.R PreproCessingccoooiiiiniiiiiiiiiiiiiiii e e e e s reae e 61
3.3 Automatic Clustering Procedure for Primitive Selection......... 68
- 3.3.1 Pattern Segmentation............ccooviiiiiiiiiiiiin i, 68
e 3.3.2 Feature Selection.........cccocooiiiiiiiiiiiiiinn 70
" 3.3.3 Primitive Recognition........cocoooiiiiiiiiiiiiii e 71
3.4 Syntax ANAlYSISccveiniiiiiiniiieei et eennenaes peerereieareeeeeean e 77
b 3.4.1 Nearest-Neighbor Decision Rule..........c...ccooooiiinnn 77
- 3.4.2 Error-Correcting Finite-State Parsingcccocveeeennene. 77
r‘ 3.5 Experimental Results on Seismic Discriminationc.coeee.nee 82
= 3.6 An Application of Syntactic Seismic Recognition
Lo Damage ASseSmMentc.coiiiiiiiiiiiiiiii i e e 98
3.7 COMCIUSION. ..cuiiiuiiiiii i e cne e ve e e rer e rerr e eneaoee 107

CHAPTER IV - INFERENCE AND PARSING OF ATTRIBUTED GRAMMAR

FOR SEISMIC SIGNAL RECOGNITIONccotiiiiiiiiieiiennennannnns 110
4.1 Introduetion ... e e e e e 110
4.2 Inference of Attributed Grammar for Seismic Signal
Recognitionot e e e 113
4.3 Error-Correcting Parsing of Attributed Seismic Grammar-...... 121
4.4 Stochastic Attributed Grammar and Parsing for
Seismic ANALYSiS ..c.cocoviiiiiiiiii e eeens e errereeseraseaannns 125
4.5 Experimental Results and Discussionccoociiviiiiiiiiniiinnnnnne 129

CHAPTER V - VLSI ARCHITECTURES FOR SYNTACTIC SEISMIC

PATTERN RECOGNITION.....c.ooiiiiiiiiiinii e ceren e e e e, 134
L 5.1 Introduction.....cc.ooiiiiiiiiiiiii e 134
2:_- 5.2 VLSI Architectures for Feature Extractioncco...ceeeiiinnenie 137
5.3 VLSI Architectures for Primitive Recognition............c.......... ...143
. 5.4 VLSI Architectures for String Matching
» Based on Levenshtein Distance............ocoooiiiiiinniiiiiiiinn. 150
- 5.4.1 Levenshtein Distancec...ccccceviiviiiiiiniineniencecneeen. 153
5 5.4.2 Weighted Levenshtein Distancecooviviineiviiininninnnns 161
E::' 5.5 Simulation and Performance Varification..............ccccoeevenninnnnn. 187
4 5.6 Concluding Remarksc.ooviiiiiiiiiiiiiii e eeeenaes 173
p--

ek tean o ta e Aad i LIPS A SOAL. WL U AP L o | PRI e Dl e e anndi ot sl sl

[

v
vl
o
P
[
b
L
i
[
E._‘.
‘E-; i
."-_';
SN
F.;"‘

‘‘‘‘‘‘‘‘‘‘‘
..........

......
......

.........

CHAPTER VI - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS176

B.1 SUIMIMATY ...ooouiiiiiiiiiiiniieieee e rt e e rer i ee et e e ree s eree s e aeenns 176
8.2 ConClUSIONScoovviiiiiiiie i e e, 179
6.3 Recommendations.........cccoiiuiiiiiiiiiniiie i 180
LIST OF REFERENCES.............. et teeere e eaue e ettt e taeaneaeeiaiaee e aaeaaannn 182
APPENDICES
Appendix A: Flow Chart for the Simulationsccceeeevuveeeeeveeeenennn. 190
Appendix B: Step-by-Step Simulation Results v, 195
2 ¥ PPN 209

........

LIST OF TABLES

Table Page

3.1 The criterion function, increments of criterioh
function and the classification results of

different cluster number selections.........cccoevveiiiiiiiniieniiennnenn. 83
3.2 The center of the 13 clusters, the number of members

in each cluster and the primitive symbol of each cluster 88
3.3 VWeights for substitution error........cooovveiiiiiiiiiiii e 92
3.4 Classification results using nearest-neighbor decision rule........ 93

3.5 The number of nonterminals, productions and negative
samples accepted by the inferred grammars..............ccccc.eene.e. 94

3.6 The average parsing time and percentage of correct
classification of the error-correcting parsers eeerevreeenea 95

- 4.1 The recognition results, computation time, and
memory used for seismic recognition using an attributed
cfg and a nonattributed fsg.........c.ooeiiiiiiiii 132

5.1 Computation time of sequential algorithm, simulated
computation time for VLSI arrays using sequential
computer, real speedups, theoretical speedups and
speedup ratio.........coooiiiiiiii i reeeeerreerees 168

Appendix
Table

B.1 The intermediate results of feature extraction at each

T v Y
R
e

-

A T T

time interval for one seismic segmentc.ccooooi 198
B.2 The intermediate results of primitive recognition at

each time interval for one unknown feature vector 203
B.3 The intermediate results of string matching at each

time interval between two stringso.cocvvviei i, 200

.....................

r."_"
3
3
-
g
i

b

3
h
kl
3

M

~~~~~~~~




fo e e e e e e e e e e e ASDER e T ?
- viii
&
u:i(
: LIST OF FIGURES
Figure _ Page
1.1 An example of two typical seismic records.....cccceeeviiiiiiiiniinnennenns 3
1.2 An example of extreme case ...........coeeviiiiiiiiiiiiiiiiins e 4
1.3 Another example of eXtreme Case .......cccceviiiieiiiiiiiiiiiieierirenees 5
= _ 1.4 Block diagram of a syntactic pattern recognition system........... 6
a 1.5 Block diagram of a syntactic pattern recognition system using
the nearest-neighbor decision rule for string pattern................ 8
2.1 The transformation from string 'aabaab’ to 'ababb’.................... 24
'::;Q , 2.2 The partial distance 6[i,j] is computed from
i 6[1,j=1], 6[i-1,5-1] @and S[i=1,5] cvvuerroriiriiee e e 25
2.3 An example of global path constraint ..........cccoooiiviii s 26
2.4 Computation of partial distance for (a) type 1, (b)
type 2 and (€) type 3 WLD .. ..oiiiiiii i 34
2.5 An example of dynamic time warping ..........c.coccoiviiiiiiiiiiininn 36
2.6 Examples of some seismic recordings in structural
damage asSeSMEeNt ......cooiiiiiiiiiiiii e e 37
2.7 Examples of slope constraints and corresponding local
distance function of modiried time warping distance................. 40
F 2.8 computation of partial distance for stochastic models ............... 43
.,-.;f: 3.1 (a) An example of seismic signal with pulse noise
o (glitch). (b) The same waveform after local filtering .................. 63
- 3.2 (a) Another example of seismic signal with several
;,__ Pulse noise (ElitCheS) ...coouviiiiiiiiiiiiiie e 64
s
;

e




3.3 (a) An original seismic signal. (b) With zero-line
added for comparison. (¢) After global adjustment.

(d) After local adjustment ............vvvvieiiiiiiiiiiiiei e, 66
3.4 Another example of seismic signal......................... ..................... 67
3.5 tr Sp increases as the number of clusters increases.................. 85
3.6 tr Sy decreases as the number of clusters increases ................. 86
3.7 The PFS curve where the maximum value -

occurs at number 13..................... eeeeerireeeaieieeaee e aeere b eaeaeanaas 87
3.8 Cluster centers of the 13 clusters in the

two-dimensional feature plane ... B89
3.9 Examples of the seismic waveforms and

corresponding strings........ocoiiiiiiiiiiiiniin e, verterearreaeesrrans 90
3.10 Top level displacement and basement acceleration.................... o8
3.11 Basement displacement of the seven test runs .........c.ccoovieee e, 100
3.12 Top level displacement of the seven test runs...................... e 101

3.13 Diagram of slope constraints and local distance
function for string distance computation in damage
assesment application...........cociiviiiiiiininn e 102

3.14 Distance between the basement displacement
"waveform and the top level displacement

waveform of each run..........cooociiiiin ST 105
4.1 A flow chart of the inference algorithm (Algorithm 4.1) .............. 118
4.2 A flow chart of the parsing algorithm (Algorithm 4.2)........c......... 124
4.3 A flow chart of the parsing algorithm (Algorithm 4.3).................. 128
4.4 A flow chart of the parsing algorithm (Algorithm 4.4).................. 131

5.1 The special-purpose processor is attached Lo
a host computer as a peripheral processor......c.ccccciiviieeiiiiinennn. 136

5.2 The internal architecture of the special-purpose

' Pl OCESSOT L it itieeieurtinreenttreansraaaerreeeaantsreettsetsnsnssssarssssssnsasnseassanae 138
L. 5.3 Data setup for (a) feature extraction, (b) primitive
3 recognition and (c) string matching........ccooiiviiiiiiiiiin i ieennen. 139
=

5.4 Processor array, data movementl and operations
= of each processor for feature extraction...........cococoviiiiiiiiiinnnns 140




5.5 The internal structure of the processor for

feature exXtraction ..oocvvieviriii v e

5.6 Processor arrays and data movement for

primitive recognition.....ccc.cooiiiiiiiiiiiii

5.7 Data flow and operations of each (a) ‘compute’

processor and (b) '‘compare’ proCessor.........ccceeeerveeerennennnns

5.8 Internal structure and register transfer of (a) 'compute’

and (b) 'cCompare’ ProCeSSOrS...ccccvieuiiiiiniieeiiereeiereaeiaanarnanns

5.9 (a) Portions of dynamic programming diagram and

(b) corresponding ProCcesSor @rray........cccccoceviveenreenineieneeennes

5.10 Internal structure and register transfer of

PE P; atstage 1,2and 3.

5.11 Data movement between PE’'S......cccooiiiiiiiiiiiiiiienceee s

5.12 Processors at the same diagonal periorm the
. same operation; three diagonals are required

for one string (a), and strings can be pipelined (b)..............

5.13 Processor array and data movement for

5.15 A PLA implementation of the weight table
5.16 Internal structure of the PE for weighted string

5. 17 An implementation of feature extraction with

Appendix
Figure

----------

computing Levenshtein distance ..............cococeiiiii

5.14 PLA implementation of a simple weight table .......................
for seismic recognition .........cccooviiiiiiii i
distance computation.......ccoiiviiiiiiiiiiiii e e

20 PE’'s and 80 points in each segment.................c.c

A.1 Flow chart for the simulation of feature extraction ..............
A.2 Flow chart for the simulation of primitive recognition..........
A.3 Flow chart for the simulation of string matching.................

B.1 Seismic segment (60 points) used in the simulation .............




ABSTRACT

Syntactic pattern recognition has been applied to seismic
classification in this study. Its performance is better than many exist-
ing statistical approaches. VLSI architectures for syntactic seismic
recognition are also proposed which take advantage of parallel process-
ing and pipelining so that a constant time complexity is attainable when
processing large amount of data. Application of syntactic pattern
recognition to damage assesment is also proposed and'demonst.rated on

a set of experimental data.

Seismic waveforms are rep'resent.ed by strings of primitives, i.e.,
sentences, in this study. String-to-string similarity measures based on
both distance and likelihood concepts are discussed along with the
symmetric property and the hierarchy. A fixed-length scgmentation is
used in the experiment. Encouraging results compareble to those of
the best statistical approaches are obtained with only Lwo very siinple
features, namely, zero-crossing count and log energy. Primitives are
automatically selected using a hierarchical clustering procedure and

two decision criteria.




Nearest-neighbor decision rule and finite-state error-correcting
parsers are used for classification. For error-correcting parsing,
finite-state grammars are first inferred from the training samples.
These two approaches have same performance in the experiment,

whereas the nearest-neighbor rule is faster in speed.

Attributed grammar and its parsing are also proposed for seismic
recognition, which could reduce the complexity and increase the
descriptive flexibility of the pattern grammars. VLSI architectures are
proposed for fast recognition of seismic waveforms. Three systolic
arrays perform the feature selection, primitive recognition andA string

distance computation. These individual units can be used in other simi-

lar applications.

Although this study is on seismic-classification, it can be extended

or modified to tackle other signal recognition problems.

el MR ot . Lt e e . - . -, - . PR -
PR P PP S T R R UL RN, PP AT DN U IO TPEUL D SV WP Wewr e gor TP SIS Shel W 87 P P — Al e -y




-
&
—

o

Dl Dy LT

i
%

o
N

'CHAPTER I

)
»
-

INTRODUCTION

1.1 Statement of the Problem

In the past, seismic wave analyses were all retained within the geo-
physical field. Underground structure and earthquake analyses are the
most important topics. The major parameters computed from the
recorded seismograms are the location, time, depth and magnitude of

the event and so forth.

In the 1960's, a new problem arose when the idea of the
comprehensive nuclear test ban treaties were proposed. The problem is
how to discriminate between the natural earthquake and the secret
underground nuclear explosion by seismological methods, which in turn

‘are based .on the seismic wave recordings (Bolt, 1976; Dahlman and

Israelson, 1977). Traditional methods use the informations like time,

location, depth, magnitude, complexity, ratio of body wave magnitude

RF HRORRRSRX

to surface wave magnitude and usually interaction of human experts.
However, these methods are not reliable for small events and require

the involvement of many seismic stations. Recently, pattern recogni-

r -
R SRS

tion has been applied to the discriminalion between these two

categories (see Chen, 1978).

e e e

T rr-.r.'l&V, i ARt
AR .




b —

ey

It is sometimes very difficult to distinguish between some earth-
quakes and explosions just by looking at the seismic signals only. Even
for experienced analyst additional informations are needed in order to
make correct classification. According to the source mechanism, the
explosion signal should look more like pulse and contain higher fre-
quency than earthquake, while the earthquake signal should last longer
and look more complex. However it is not always true since the depth
of the source, distance and geophysical configuration of the path will
change the waveform significantly. Here are some examples. The
difference between explosion and earthquake is very clear in Figure 1.1,
but not so in Figure 1.2 and Figure 1.3 where neither frequency nor
complexity can tell the difference. In pattern recognition terminology

these two classes are overlapped.

All the existing pattern recognition applications use statistical
approach. Since the complexity and structural information play an
important role in seismic analysis, it is thus natural to pursue syntactic
(structural} approach in seismic pattern analysis: In oil exploration,
the structure of the seismic reflection indicates the underground struc-
ture. In earthquake / explosion classification, the structural informa-
tion is the most important feature. The block diagram of a typical syn-
tactic pattern recognition system is shown in Figure 1.4. Due to the
unknown characteristic about the source and environment, seismic
grammar is usually diﬁ‘icult to construct manually. Therefore, gram-
matical inference techniques will be applied to infer the pattern gram-
mar {rom a set of training samples. An error-correcting parser will also
be used because the chance that a testing sample is perfectly accepted

by the inferred grammar is very slim. This is usually a rule rather than

""" [ TS VOO U U SUPY S ST S




LLIA
v

T r.y
|“-.‘.'.'. R
RIS T IR BRI Y .

»

‘|l.-l
.

- -,
T — — P St A i Pl A A - . -
— P+ a2 N R AN S I K . .

Figure 1.1 An example of two typical seismic records. The top ore is an
explosion; the bottom one is an earthquake.




it}

<t
[

P

MAANNE ]
a0y

r
B

LeC
»

Yl gl il A ki alki WY,

D
.

T v
e
FREE)

AR P 008220

S .. . -
.. PRI SR S S R B
PP O S S I Sl

-— W T, W T
Hren ant e b el S SR S R e

Figure 1.2 An example of extreme case. The top one is a typical explo-
sion waveform; the bottom one is an earthquake record which looks like

an explosion.

L —




T

[iw',"i.“'.. S
SRR « v LI

w

T Lt ot g
1'."13' Aan vy 'v.""]' ,,",","‘, g ‘. i .:"',Al‘.-"‘ 3
- e am NS ‘. LT IJ‘ RN

Figure 1.3 ‘Another example of extreme case. The bottom one is a typical

earthquake waveform; the top one is an explosion record which locks like
an earthquake. !




el

[

SN wLY T
SR

"u1331s£s uoniudooas usajyed onoejuss v jo weaderp yooig 1 adndiy

... ) UO}PNIBU0D)
b , duwiwean uoiysjuasasday uiareyg
uoldajag uolIeIIXY uoye sajdwsg
aappuuiag [*1 aammag [* -juaswsag Sulugeay
2duasaju]
(e swwnay)
©
uonydiassaqg sIny Sugureay
- - T T T T T T T T aappupg T T T T uoenmuawsst T T oo Lo
(Bugsany) uopjjuBos uoI3IBIIX uoys d
: N> 1. 2! | S EALEPIC | 1) sojduisg
X :o_odoﬁL_D Mncmﬁda— aﬂh.“.m.“ N saputag [l samwag [¥] -uswsag saL
i
uoijejuasazday uanied

\ J KRS - SPNIIHE, J SARSIHEIE . 4 I

S D S S S W

y

MU R A S G ST Y

P ST YN WA S




.........................

an exception in many practical applications, and seismic analysis hap-

:! : pens to be one of them. This is due to the noise and uncertainty of the

4

[
v
?-
| I
.

source and background. In addition to grammatical approach, we will
also use nearest-neighbor decision rule for classification. Of course, the
distance, or similarity, computation is between the string representa-
tion of the seismic signals. The block diagram of nearest-neighbor

classifier for syntactic patterns is shown in Figure 1.5.

Due to the recent advance of VLSI technology it is now feasible and
will soon become economical to design custom chips for special applica-
tions (Mead and Conway, 1980; Kung, 1979; Ackland, et al., 1981). A VLSI
system for seismic signal recognition will also be developed in this

study.

1.2 Literature Survey

1.2.1 Syntactic Pattern Recognition and
Digital Signal Processing

Applications of syntactic pattern recognition to digital signal pro-
cessing have received much attention and achieved considerable suc-
cess in the past decade (see Fu, 1982). The most prominent applica-
tions are in the areas of biomedical waveform analysis and speech
recognition. The reason of their success is that these waveforms have
regular and predictable structure. Most biomedical waveforms, e.g.,
ECG wave and carotid pulse wave, are rhythmic and generated by

specific organs of the body where their funclions are well understood.

P A -




e

w W e T e T

‘sutajjed Jullls Joj a[nJa uoIsOap Joqydiau-}sateau ayy Juisn
wa)sds uorjudooas uiajjed O1j0wvULs v Jo ureadeip qoold g1 aJanTyg

uowulsazday uiNyng
uotIARS uoL}IwIIXY uone sajdursg
A g 1 aanmwag [*] -ruawmBag fuureay
uogydisasaQ sa[ny Butugeay,
- - — —— — |/ — T/ T aapmuug T T T T uopwjuawlsgt T .ﬂ.- Aoy
yny uonyeindwo)
fney uospaq Puesiq - uonuBooay " uoideIIXY " uonw sydwng
uonwIyieNe|) ' JoqyBaN .ow..um..om Aty vy “JuawmiBag 1],
“)834BIN] ~aulayg
uosysjuasazday uanywg

»
..... c camme. -
- PR S R . S, L [ I . - . - e -
s ﬂ‘ "t .L.!! . A S, ' S e R AP R LI ST T B e e eterte .
- e - Sy e, .iat iaet PR AR O A RS SOV ST h..A.v...y....a—

........

At am arabmra = o ot

. L

s

OO TR0 . TR W Wy




It is thus easy to write a grammar for these waveforms based on their

functions. Horowitz (1975, 1977) developed a syntactic algorithm to

oo
»* e
T
» ‘_l
e,
r .
...
1R

detect the peaks of ECG waves. Albus (1977) used a stochastic finite-
state model to interpret ECG signals. Giese, et al., (1979) proposed a
syntactic method to analyze EEG signals. Stockman, et al.,, (1976)
applied a syntactic method to analyze carotid pulse waveforms. The
major problem in biomedical waveform analysis is the noise which could

be generated by muscles or other sources (Albus, 1977).

It has been shown that speech patterns are related to linguistic
items by a complex set of rules belonging to "grammar of speech”

(DeMori, 1977). Therefore, the most effective way of detecting and

recognizing speech patterns is by syntactic method. DeMori (1972) has
shown a syntactic method to recognize spoken Italian digits. The major
g problem in speech recognition fs the variability of the speech patterns.

- They are speaker-dependent as well as context-dependent. Even for the
h same speaker and the same word, the features extracted from different

utterances are usually not the same.

t We will review in this section some of the existing syntactic
] methods applied to signal processing. Although preprocessing is also

important, we do not include this part here, because it is case depen-

DA o ity
PR

s

. .

dent and is usually not related to the recognition stage. However, we

will discuss the preprocessing procedure later in our experiments of

.

E~j seismic signal recognition. We will now concentrate on the major parts
: of syntactic pattern recognition system, i.e., segmentalion, feature
tﬁf.ﬁ extraction, primitive selection, grammatical inference or construction,
Lr'l and syntax analysis.

RN PR




______________________________________________________________
.......

T 10
! A waveform must be converted into a string of primitives (tree or
graph for high dimensional representation) before grammatical infer-

o ence and syntax analysis can take place. Since a waveform is a one-
o dimensional signal, it is most natural to represent it by a string of
. primitives. Various series expansion, for example, Fourier series, and
spectral analysis techniques have been used to approximate the whole
waveform. However, they are not suitable for syntactic analysis
because the relationships among one part of the waveform and the oth-
ers are significant in syntactic analysis. Although they can be used to

feature waveform segment, they are subject to the constraint of seg-

DAt N et Tyt

ment length and characteristics of the waveform. Pavlidis (1971, 1973,
1974) proposed a linguistic waveform analysis algorithm in which he
partitioned the waveform into several segments by using linear approxi-
mation. The basic idea is to minimize the number of segments by
merging and splitting while the error norm of each segment is retained
below the error tolerance. Horowitz (1975, 1977) extended this idea
and added peak detection algorithm. He gave a syntactic definition to
the positive peak - a positive slope followed by a negative slope or posi-
tive slope followed by zero slope and then followed by negative slope. A
negative peak can be defined in a similar way. He further constructed a
deterministic context-free grammar to recognize positive and negative
peaks. This approach is useful in waveform shape analysis because of

its simplicity. However, the curvature informations are not included.

Another interesting representation of waveform is by tree struc-

ture. It was first introduced by Ehrich and Foith (1978). The peaks and

e
»
=
A

valleys of the waveform are detected and connected by a relational

tree. Sankar and Rosenfeld (1979) extended this idea by using the

TR T

Cala g

T '—‘TW..

---------------- [N W Sl S VU, G P W - o W)

.,_.
;

|

g
v
L
b

g
P)

!

’

1

]

7]

v}

R

y



P S AR

4

M B SR

Ty

A Amn Jus s

11

concepts of fuzzy connectedness. This method converts one-
dimensional waveform into two-dimensional tree structure. It is useful
for unipolar waveform analysis such as terrain analysis, but not so help-
ful for the analysis of bipolar waveforms such as ECG wave and random
waveforms such as EEG and seismic waves. Another well-known method
of converting one-dimensional signal into two-dimensional image is
called spectrogram which is used very oiften in speech analysis
(Flanagan, 1972). The spectrogram of a waveform is the plot of energy
as a function of time and frequency. Time and frequency are the hor-
izontal and vertical axes of the picture. Energy is represented by gray
level intensity. This method needs special facilities to convert a small
segment of time-domain signal into frequency-domain representation
efliciently. Automatic interpretation of the two-dimensional image is

still a subject for studies.

Giese et al. (1979) proposed a syntactic method to analyze EEG sig-
nal. The EEG recording is divided into fixed-length segments, each seg-
ment is equal to 1-second period. Seventeen features are computed
from the spectral of each segment. A linear classifier is applied to clas-
sify the segments into seven categorics. An EEG grammar is manually
constructed and a bottom-up parser without backtracking is used for

syntax analysis.

Stockman et al. (1976) proposed a syntactic pattern recognition
system for carotid pulse wave analysis. A set of thirteen primitives
including various type of line segments and parabolas are used. The
subpattern and primitive extraction starts from the most prominent
substructure, e.g., long line segment, and then less prominent struc-

tures with respect to the more prominent ones, in a prespecified order.

PP Py —_— . ot - : PSSR VRN OIS, G VY N W ST Y SN L - PN L. W .

LS e Jaskl Ee St Stus bt Shiasec i Tt M At A Y Y

PO TS PR A WP




12

A context-free grammar is manually constructed and a top-down parser

is used for syntax analysis.

De Mori (1972, 1977) proposed a syntactic method to recognize spo-
ken digits. First, each 20-rf1sec segment was sent to a low pass filter
and a high pass filter, and zero-crossing intervals obtained at the out-

ut of the two filters were classified into certain groups, i.e., eight for
LPF and five for HPF. Then, each spoken word is represented pictori-
cally on a two-dimensional plane. Finally, a context-free grammar is
constructed and a bottom-up parsing is applied. He further introduced

syntactic methods for preprocessing, feature extraction, emission and

verification of hypothesis and automatic learning of spectral features.

Mottl’ and Muchnik (1979) declared that there are two kinds of
curve sources which require the linguistic approach for analysis. One
kind of source is consistent with the phenomenon which is a process of
many stages. The curve consists of parts corresponding to the stages.
The junction of the parts are the time when stages change. The segmen-
tation algorithm should divide the curve into a number of adjacent
parts characterized by the curve shape. Exampies of this kind are ECG

waveform and carotid pulse waveform analysis.

The other kind of source represents an object which is chiefly in an
invariable state and occasionally leaves as a result of short-time distur-
bances. For such a curve the segmentation should identify only certain
fragments which are regarded as informative while the remainder are
left out. Example of this kind is the acoustical diagnosis of internal-

combustion engines (Mottl' and Muchnik, 1879).

We feel that seismic wave is the third kind of curve which does not

fall exactly into any of the above two categories. The seismic waves are

....




M v
Y [ N

13

Y - S y——
PR T

influenced largely by background as well as by source. Sometimes we
are interested in the background, e.g., oil exploration; sometimes we
are interested in the source, e.g., nuclear test detection. This will be

discussed in the next section.

1.2.2 Pattern Recognition and
Seismic Signal Analysis

The major studies of seismic waves can be classified into the follow-

ing areas (Bath, 1979):

1. Seismic prospecting. This is the most attractive Lopic in these
days. Seismic methods are applied to exploration for occurrences of
oil, ore bodies, minerals, etc. The reflection method and ‘he refraction
method are two major methods in use. It should be noted that it is not
possible, at least by now, to detect oil, etc., by seismic or any other
geophysical methods. It is only possible to discover geological forma-

tion which may indicate the occurrence of oil, ete.

2. Wbration measurements. The effect of vibraions, ¢ ue to mining,
traffic, etc., on various structures and human beings is studied. Such

measurements are usually made with accelerographs.

3. Stress measurements. Measuremenis of absolute stress have

A

been used to investigate the strength of building materials and stability

ey

in mines.

4. Earthquake engineering. This field studies the effects of earth-

quakes on all kinds of building structures, especially on crucial struc-

ture such as nuclear power plant.

[

. .‘.q 2 L
. d et T
et LN R




14

5. Farthquake prediction. A very importat field although no

significant progress has been made.

6. From the recording of seismic waves to establish the nature of

the source. For example:

a) Nuclear test detection - detect secret underground nuclear

T
AL

explosion.

b) Seismic detection of rockburst - locate small rupture by seismic

methods.

Most of the existing pattern reconition applications in seismic ana-

lyses are to the classification of earthquake and nuclear explosion.
Chen (1978) proposed a statistical pattern recognition method for
classification of earthquake and nuclear explosion by the seismic wave
recording. He emphasized on the extracton of effective features. Geo-
physical features such as complexity, spectral ratio and third moment
of frequency are tested first. Then he used complex cepstrum, orthogo-
nal transformation, autocovariance features and short-time spectiral
features for classification. His conclusion is that the performarice from
a single class of features is somehow limited and the combination of

various features does not improve the performance because of correla-

tion. He suggested to use both statistical and structural features.

r @ Tjostheim (1975, 1977, 1978) suggested that autoregressive
coeflicients can be used as features. He has shown that a seismic P-
wave can be represented by an autoregressive model of finite order.

The shorti-period P-wave is divided into five segments. The first three

"'vv'v"
AR}

= autoregressive coefficients of each segment form the feature vector.
h The combination of different segments is used to achieve better perfor-
t mance. This approach where the whole P-wave is divided into several
&




——
.

. 'S .. . -; . . .

mi vy

LGt G ath S

ol

rat o ol e g
P . ‘

T led

E—L&'—L‘_ [ SIS0 N SR N

PRy S

- T T T O T W T X

3 Dt e A R . o
L AR 2 Bt g Ty e | ~

15

segments is an improvement, but still no structural information has
been used.

Sarna and Stark (1980) also used autoregressive modeling for
feature extraction, but k-nearest neighbor rule for classification. When
applied to artificial data, this procedure gave excellent results; how-
ever, the results on real seismic / explosion data are very poor. This
may indicate that autoregressive modeling is not suitable for real
seismic waves. Most of these studies concentrated on f{eature
selection. Only simple decision-theoretic techniques have bzen used.
However, syntactic pattern recognition appears to be quite promising in
this area. It uses the structural information of the seismic wave which

is very important in analysis.

Syntactic pattern recognition has been pointed out as a promising
approach to seismic classification (Chen, 1978). While quite a few
statistical approaches have been proposed, we are the first to apply
syntactic approaches to this area. With only very simple features, our
approaches attain encouraging results comparable to those of the best
statistical approaches. Our approaches also differ from the foregoing
syntactic methods in the treatment of primitive selection and grammar
construction. A clustering procedure along with some decision criteria
constitute the primitive selection algorithm in our approach, while
heuristic approaches were used by others. Our pattern grammars are
inferred from the training samples, but most pattern grammars for
signal analysis are constructed manually. An attributed grammar for
our specific application is proposed, which could significantly reduce

the grammar size and increase the flexibility of description. Finally,

L Y S S PPN G SR S0 PSR IS S . a




16

VLSI architectures are proposed for seismic classification, which
include feature extraction, primitive recognition and string niatching.
Our string matcher is different from many contemparory
implementations, i.e., exact matching, which are not suitable for
pattern recognition applications; the detail will be discussed in chapter
V. The results can be produced at a constant rate, i.e., constant time
complexity, when using our VLSI architectures with pipelined daia flow.
Although these VLSI systems are developed for seismic classification,

they can be applied to other similar applications.

After the crunch of energy crisis, searching for oil has become
more desperate than ever before. Seismological methods use small
chemical explosions to generate seismic waves. These seismic waves
penetrate down the crust and are reflected by the boundary of different
layers. Analysis based on the reflected seismic waves can find the clue
about the local crust structure and oil deposit (Bath, 1978). Bois (1981)

has applied pattern recognition technique to petroleum prospection.

Another potential field for application of pattern recognition is the
damage assesment in structural (earthquake) engineering (Fu and Yao,
1979; Yao, 1979). During a strong earthquake, the accelerometers in a
large building structure will record the acceleration of the building.
From these recordings (and other informations) the damage of the
building, as far as the structural damage reflected on the seismic

recordings is concerned, can be classified into certain classes.

. . . . [ L
o S M S - SN WAL WP D G S LI e W WY WP ey '\




17

1.3 Organization of Thesis

We have seen some examples which apply syntactic approach to
digital signal analysis. Those systems are usually heuristically con-
structed and therefore application dependent. We also showed several
statistical pattern recognition approaches to seismic classification. We
would like to study in this research the application of syntactic pattern

recognition to seismic classification. Two approaches are investigated:

one uses grammmatical inference and error-correcting parsing; the other
computes string-to-string distance and applies nearest-neighbor deci-
sion rule. Chapter II discusses the string similarity measures, which
#g are hierarchically classified, and classification procedures which
f include error-correcting parsing and nearest-neighbor decision rule.
Chapter III shows procedures and experimental results of syntactic pat-
tern recognition applications to seismic discrimination, i.e., earthquake
u / explosion classification, and damage assesment. Attributed grammar
t: which can reduce the complexity of the pattern grammar is discussed
in Chapter IV. Chapter V discusses VLSI architectures for syntactic
. seismic classification, which include feature extraction, primitive

b recognition and string matching. Chapter VI is the summary, conclu-

¢

.
I PR ]

sion and recommendations for future research.

+

°d

Although our experiments are on seismic discrimination, these

- approaches can be applied to other similar applications. For example,
t pattern recognition method has been used to determine the nature of
3 reserviors in petroleum prospection (Bois, 1981). The unknown reser-
‘ vior is compared with a known reservior, for example, one which con-

tains oil. Features are computed from the seismic traces of the two

reserviors and ploted on a two-dimensional plane. The similarity

1

A2 S ot el IR Gy S ) A L A




¥
]

18

between the two reserviors is determined by the distribution of the two

: N O
' . R 4
‘., N I

clusters. Since the nature of the reservior is characterized by the

seismic traces, it is possible to compare the seismic traces of the two

reserviors directly.

Levenshtein distance has recently been applied to speech recogni-
tion (Okuda, Tanaka and Kasai, 1876; Ackroyd, 1980). It can be used to
correct the letter or phoneme sequences that are generated by the
recognition machine, or can be built directly into the recognition pro-
cedures. Our VLSI string matcher can be applied to both cases. Futh-
ermore, our primitive recognizer can also be applied to the case in Ack-
royd (1980). Mott]’ and Muchnik (1979) proposed a linguistic approach
to the analysis of experimental curves where a special-purpose
language is constructed to describe the pattern. The distance between
two strings is defined as the minimum number of insertion and deletion

of symbols, which is in essence equivalent to Levenshtein distance.




I T e T e v T T e Y . ™ . -

B

19

2 CHAPTER II

SIMILARITY MEASURES AND RECOGNITION
PROCEDURES FOR STRING PATTERNS

2.1 Introduction

Tt Tt -
N ‘ jz R
.- - . .

One important premise in pattern recognition is that we can meas-
’f! ure the similarities between patterns. We say that a pattern belongs to
- one class if and only if that pattern is more similar to the members of

this class than the members of other classes. These wneasures can be

nominal where numbers used only as names, or ordinal where only rank
orders have meaning, or interval where seperation between numbers is
meaningful, or ratios where a natural zero exists. Distance is a popular
candidate for simlarity measure. If the pattern is represented by a
vector, as in the case of statistical approach, the Euclidean distance is
usually used as a similarity measure. The Euclidean distance has many

nice properties, for example, symmetric and invariant under transla-

tion and rotation.

In syntactic approach, patterns are represented by strings, trees
or graphs, therefore similarity measures must be available for these
syntactic patterns. Several similarity measures have teen proposed to
tackle this problem (Fu, 1977; Lu and Fu, 1977, 1978b). Since our major
interest is string patterns, we will review some well-known string simi-

larity measures, discuss their properties and define a hierarchy of




-
(ay”
T

15
i 8 M

¥

.

P

PRl Tt 1 OO L
et LR Loty -t P
A N, LA o
R ER I I R

S-S
£

[

Lasn o

v e
Teteh
PN

.......

20

string distances.

String similarity measure can be applied to string-meatching in
information storage and retrieval (Hall and Dowling, 1880), speech
recognition (Sakoe and Chiba, 1878), clustering of string patterns (Fu
and Lu, 19877) and nearest-neighbor decision rule for string
classification. It is also used in error-correcting parsing. Given a string
y and a language L(G), an error-correcting parser (ECP) generates a

parse for string z, where z € L(G) and z is most similar to .

Section 2 of this chapter discusses various types of string similarity
measures, including both nonstochastic and stochastic models. String
distances are classified into general string distances and special string

distances. General string distances are based on the principles of

insertion, deletion and substitution transformations. Special string dis-

tances are those not based on the above principles. One example is the
time warping distance in speech analysis. We propose another special
distance computation for damage assesment. A hierarchy of general
string distances are also defined. Section 3 describes error-correcting
parsing algorithms which do not require expanded grammars. Section
4 discusses and compares two recognition procedures, namely, the
error-correcting parsing and the nearest-neighbor rule, for syntactic

patterns, and Section 5 gives the conclusion.

This chapter emphasizes the symmetric property of string similar-
ity measures. This is not a problem when we use Euclidean distance as
the similarity measure, since Euclidean distance is always symmetric.
Bul this is not true when we define string similarity measures, espe-
cially when using weighted distance. The error-correcting parsing algo-

rithms using symmetric string similarity measures are also given which

R B LWL e - L . -
Saho i LY. S e PP OIS WP LWL P - PSR W -~ P Y




Y
t

3 - M AR
.-.A (S .I q PRI N
R T e e .- T @

21

can not be solved by any other existing parsing algorithm.

2.2 Similarity Measures of Strings

String similarity measures can be defined in terms of two different
concepts, i.e., distance concept and likelihood concept. The former is
for nonstochastic models and the latter is for stochastic models. Con-

sider string z = a2, - - @, and stringy = b,b, -+ - b,,, the string simi-

.larity measure between z and vy is defined as the distance or probabil-

ity that string y is transformed from string . The distance or proba-
bility of transformation from x to y is ususlly different from that of
transiormation from ¥ to z, therefore, results in an asymmetric simi-
larity measure, i.e., the similarity between x and y is different from the
similarity measure between v and z. This is a big disadvantage in some
applications, for example, in string clustering. The inconsistency in
similarity measures makes the outcome inconsistent. Therefore we

want to discuss the symmetric property of the string similarity meas-

ure,

2.2.1 Similarity Measures based
on Distance Concept

The distance measures between strings have been proposed for
more than one decade and appeared often in the literature (see Fu,
1982). It is known (Okuda, et al.,, 1978) that Weighted Levenshtein Dis-
tance (WLD) is more accurate in the correction of siring errors than the
abbreviation method (Blair, 1960), the ordered key letters method
(Tanakd and Kasai, 1972) and the elastic matching method




......

fat e At e e el e . PN .

22

(Levenshtein, 1966), where all of these apply substitution, insertion and
deletion to string symbols. Fu and Lu (1977) have classified the weight
metrics into three categories, but did not consider the symmetric pro-
perty of the metric. We would like to further extend this idea and
include the discussion of symmmetric property.
A. General String Distances

One of the primitive string distance definitions is called the
Levenshtein distance (Levenshtein, 1966). The Levenshtein distance
between strings z and y, z, ¥ € L°, denoted as d4(z,y), is defined as
the smallest number of transformations required to derive string y
from string . The transformations include insertion, deletion and sub-
stitution of terminal symbols.
Definition 2.1 For any two strings £, ¥ € £°, we can define a sequence
of transformations J={Ty, T, ..., Tp}, n 20, T; € {Ts, Tp, Ty} for 1 =1
< n, such that ¥ € J(x). The transformations 7g, Tp and T; are

defined as follows:

(1) substitution transformation, Ty
Ts
wewy |——wbwzforalla,b €, a £b.
(2) deletion transformation, Tp
T,
wawy I—D—w,wg foralla € L.
(3) insertion transformation, T}
Ty
W | —wjawy for alla € .

where w;, wp € £°.




3

D g

Y rrr-E et
ce o amn-s K

h -.T,.v—- o
B - N
oo

........

......

L

23
Definition 2.2 The Levenshtein distance d%(z,y) is defined as

dl(z,y) = min ki + m; + nj]
J

where kj, m; and n; are respectively the number of substitution, dele-

tion and insertion transformations in J.

Definition 2.3 A distance between two stringsz,y € £°, d(z,y) is sym-

metric if and only if d(z,y) = d(y.z).

Since all the insertion, substitution and deletion transformations
are counted equally, the Levenshtein distance is symmetric. It is
equivalent to assigning weight 1 to each of the transformation. We call

these weights type 0 weights.
The computation of the Levenshtein distance can be implemented
by dynamic programing technique on a grid matrix as shown in Figure

2.1. The partial distance 6[i,5], which denotes the minimum distance

‘from point (0, 0) to point (i,7), can be computed from the partial dis-

tances 6[%,7—1] 8[i—1,7—1] and 6[i—1,7] as shown in Figure 2.2. The
total distance is simply 6[n,m ], where n is the length of the reference

string and m is the length of the test string.

Since the minumum distance is unlikely to occur in some areas of
the grid matrix, for example, the upper left corner and lower right
corner, a globol path constraint can be imposed to save computation

time. Figure 2.3 shows a window constraints such that only those points

(€, 7). Ii—%jl =< r, where 0O<i=n, 0<j<m, r is a selected constlant,

are subject to distance computation. Algorithm 2.1 is for general string

distance computation with global path constraint.




E R A it S e B R it it T T Wy

24

Cwe

(8,6)

e

s Figure 2.1 The transformation from string 'aabaab’ to 'ababb’. The
Levenshtein distance d’(aabaab ,ababd) = 2.
L

—

" PP S I T L e
A WP e . . LD, S S




:'si

A

LA AT ]
e Y )

6li-1,j)

25

JiR)

Figure 2.2 The partial distance 6[i,j] is computed from 5{i,j-1}, 6{1-1,j-1]

and 6[i-1,j].




...................................
A T T TR TV TR Y U U L S

26

Figure 2.3 An example of global path constraint.




_27

Algorithm 2.1. Computation of general string distance with
global path constraint
Input: Two strings z=a, a3 - - e, and y=b,b65- - - b, where
a;, b; € T for all i<i<n, i<j<m,
! and a constant » for global path constraint.

Output: The general string distance d(z,y).

Method:
(1) 8[0, 0] := 0;
(R) for i :=1tor do 6[t, 0] :=6[i-1, 0] + 4;;
(83)forj:=1to %‘—r do 6[0,7] := 6[0.7—-1] + A;;
(4) for j := 1 to m do begin .
P
+1: poey J-r
P AP
i : py j+r;

fori:=1i1 toi2 do
if (1 2 1) and (i<n) then 6[%,j] := min(1,j);
(* min(i,7) is a function for local distance computation *)
end;

(5) d(z.y) :=é[n.m];

We use a function min(i,j) in Algorithm 2.1 to compute the local
distance. The function min(i,7) can be computed seperately to match
different local distance constraints and return a distance value. For
Levenshtein distance, min(i,j) = min { 8[i—-1,7] + 1, 8[t.7-1] + 1,

6[i-1,j—1) + 1 } if @; £ b;; otherwise min(i,j) = 6[i—1,7—1]. This

arrangement is more flexible since the dynamic programming portion

never need change, only different function min(i,j) is used for

v Ty Y

v




28

different applications.

The Levenshtein distance appears to be not powerful enough for
many pattern recognition applications. However, it may be sufficient
for string matching in information retrieval (Hall and Dowling, 1980).
Fu and Lu (1977) have proposed a weighted Levenshtein distance (WLD)
where different weights are associated with different transforrﬁation

and terminals.

We can make the string distance definition more flexible and prac-
tical by assigning different weights to different transformations and/or
terminals. There are at least three possible cases. In the first case,
different weights are éssigned to different transformations but all ter-
minals are treated equally. We call these weights type 1 weights. Here

are the transformations:

Ts,O'

(1) wyews | wbwyforalla,b € T, a #b, where o is the cost of

substituting b fora,oc = O0Owhend =ca.

Tp. 7 w0, for all @ € T, where 7 is the cost of deleting

(2) wjaw; |

Ty,

(3) vz | L w;aws for all @ € T, where p is the cost of inserting

a.

where w;, wp € Z°.

;;-1- The distance defined by these transformations is called type1l

- weighted Levenshtein distance.

Definition 2.4: The type 1 weighted Levenshtein distance d"(z,y) is

defined as

Y™
]

vy
s

DNE BB.ASA ARSI

e

et e CIPRENTE RPN I S W NP WAL WP CONSE PV P PN WDV S UL S ST UPUGLIPIET I Or G




—pey - —— -
v DADACARAS . IR
.. A R P N S

L L

t

—py
i“.'v Nl
[ LA

Wt

LA st ant i au S Sa s aa 4
ERE S ’

-

vy

P TR e T W e e T e e TUe T W T e W W e W
—— . T e, TR T ~ . PN Pt ..

29
d'“(:c,y) =min{o - k; + 7 m; +P'TLJ-}
J

where k;, m; and n; are defined the same as in Definition 2.3.

Theorem 2.1 d¥!(z,y) is symmetric, ie., d¥(z,y) = d"(y,z), if and
only if ¥ = p.

The WLD d"!(z,y) can be computed by Algorithm 2.1 where
min(i,7) = min {6[t,j—1] + p, 6[t—1,-1] + 0, 6[i—1,7] + 7} as shown in
Figure 2.4(a). The weights in step (2) and (3) should also be changed.

In the second case, different weights are assigned to different
transformations and terminals, but the weights associated with the ter-
minals are context-indepentent. We call these weights type 2 weights.
We have the following transformations:

Ts, S(a,b
(1) wyews ]—S——(L—)—w,b wpforalla,b € Z,a 2 b, where S(a,b) is

ithe cost of substituting b for a, S{e,a) = 0.

Tp, D A
() wijaws |-—D—(a)—wloa for all @ € Z, where D(a) is the cost o1

deleting a.

T;, I{a
(3) wywp |——I—-—(—) wjowy for all @ € T, where /(a) is the cost of

inserting a.
where w;, wp € Z°.

The distance defined by these transformations is called {ype?2

weighted Levenshtein distance.

Definition 2.5. The type 2 weighted Levenshtein distance d¥%(z,y) is

defined as




RN
R

-
At
.

M4

o

3

RS MR
M

s

30
d¥3(z,y) = m’_in Y Sj(a,b) + TD;(a) + T;(a)

where a¢,b € £ and J is the sequence of transformations used to derive

y fromzx.

Theorem 2.2 d"%(r,y) is symmetric if and only if D(a) = I(a) and
S(a,b)=S(b,a)foralla,b € .

The type 2 WLD d"?(z,y) can also be computed by Algoritm 2.1
where min(i,j) = min {6[i,j~1) + I(b;), 6[i-15-1] + S(a;,b;),
6{i—-1,7] + D(a;)} as shown in Figure 2.4(b)..

In the third case, the weights associated with the terminals for
insertion and deletion are context-dependent. We call these weights
type 3 weights. We have the following transformations:

Ts, S(a,b)

(1) wyaws | wibwyforalla,b € L, a #2 b, where S(a,b) is

the cost of substituting b for e, S(e,a) = 0.

TDv D(b ,a.)

() wabwsy | wibwy for all @ € L, b € TYf{&}, where

D(b,a) is the cost of deleting @ in front of b.

TI- I(a.,b)

(3) wjawy | wibaw, for all b € T, a € Tyi&}, where

I(a,b) is the cost of inserting b in front of .
where w;, wp € £°.

The reason of using (2) is for symmetric purpose. As we mentioned
earlier, the symmetric property is important in distance computation;
otherwise, the distance between two strings will not be unique, depend-
ing on the selection of reference string and test string. In string recog-

nition, there may not be such problem, since we know the reference




>y
i

(i 2 v B0a Rt ISRt aat Sl
R Y YSETENEIEIERNE TR

1:1 ‘1'

31

and test string. However, in string clustering, the problem will occur,
since we have to treat each string equally. Context-dependent weights
are useful in some other applications, for example, in speech recogni-
tion, where the repetition of some symbols is considered legal. For
instance, the strings z, ¥, where

r=aaabbc

y= aabdcc

may be considered identical, i.e., with zero distance. In this case, it

can be easily implemented by letting /(e,2) = D(a,2) =0 foralla € L.

The distance defined by these transformations is called type 3
weighted Levenshtein distance. These transformations are similar to
what Fu and Lu (1977) have proposed but different in two aspects.
First, a right endmarker "&" is used for both the reference and test
strings, therefore no additional transformations are needed to handle
the end point insertion or deletion. From now on, we will use £ to
represent £ |J {&}. Second, the weights associated with deletion

transformation are context-depentent.

Definition 2.6: The type 3 weighted Levenshtein distance d¥3(z,y) is

defined as
d¥3(z,y) = rnJ_in{ES,-(a.,b) + Y Di(c,a) + L I;(c .a)}

where a,b € £, c € T and J is the sequence of transformations used to

derive y fromz.

Theorem 2.3 d"3(z,y) is symmetric if and only if D(a.b) = I(a.b) and
S(a,b)=S(b,a)forallb €, a el

...................

T Y il A



LI i o8 o0 e oue,
+ LI g AR
-

32

Before deriving algorithm for computing type 3 WLD, we have to
consider one more problem. Since the weights are context-dependent,
the order of insertion and deletion transformations can no longer be

ignored.

Ezample 2.1: Let the string y=abcdap and z=aaf, z,y € Z’, a, f €

(ZUN)’, then the transformations from z to ¥ can be

aaf Iﬂmabaﬁ I&'E)—abca.ﬁ |ﬁ-‘hﬂ—abcdaﬁ, or
aaf Iﬁmabaﬁ IMabdaﬁ II—(Q'E-Labcda.ﬂ, or
aaf Iﬁg'éc-)—aca.ﬁ |Mabcaﬂ Iﬂg’—d)—abcdaﬁ. or
aaf IL(&—C-)—aca.ﬁ IL(E'E-)—acdaﬁ IL(C—'L)—abcda.ﬁ. or
aaf |Mada.ﬂ IL@"—bl—abda.ﬁ II—@ﬁ)—abcdaB, or
aaf [M)—ada.ﬁ II—@'—’C—)—acdaﬁ IMabcdaﬁ

There are six different transformations available for Example 2.1.
In fact, there are k! different transformations to insert & symbols in
front of any specific symbol such that all have the same final result. In
Example 2.1 there is no reason to assume that the order of insertion is
"b follewed by c followed by d". Therefore, the minimum cost transfor-
mation should be determined from those six transformations. However,
the computation is much more complicated so that the little gain from
the real minimum cost transformation may not pay off the extra
amount of computation. If we are allowed to chose a suboptimal solu-
tion, we will stick to one type of the transformation, i.e., the first one in

Example 2.1.

e ]



. ;'-'
-

3

4

AL . o)

¥ '.‘!H'T.' A
P Jlate

Ol Tor, €
bt S

oy
AR

YTy
-

A B il
'- . & 4 .

i P40

0 o A S jrs JUsca M)
SLEL N

33

The cases for deletion are similar to those for insertion. Consider

Example 2.1, the transformation from ¥ to z corresponding to the first

one is as follows:

abcdaﬁ lMabcaﬁ |2$£)—abaﬁ IMQGB

It is noted that ihe symmetric property is preserved here.

We can use Algorithm 2.1 to compute the type 3 WLD d¥3(z.,y)
where min(i,7) = min { 6[t,7-1] + I(a;4,,b;), 8[i—~1,7—1] + S(a;,b;),
6[t~1,7] + D(bj+1,0;) } as shown in Figure 2.4(c). The weights in step
(2) and (3) should also be modified.

We can define a hierarchy on the four types of distances, i.e., type 0
distance is a proper subset of type 1 distance; type 1 distance is a
proper subset of type 2 distance, and type 2 distance is a proper subset
of type 3 distance. They are capable of computing all the general string
distances based on the concepts of insertion, deletion and substitution
transformations. However, there are some exceptions of distance
measurements which do not base on the idea of insertion, deletion and
subtitution transformations. We will call them the special string dis-

tances.
B. Special String Distance

The special string distances mean that these distances can only be
applied to some specific applications, also they are not based on the
idea of insertion, deletion and substitution transformations. One exam-

ple is the dynamic time warping for speech recognition, the other is the

modified dynamic time warping for damage assesment.

In spoken word recognition, the recorded speech signal from

different utterance is different even for the same word by the same

L. T . R "SI YU U S WU VR WU T P S W W0 S G S SRy SO S e e P —_—




"a'IM £ 2d £y (9)
pue g ad43 (q) ‘1 ad4y (@) J0) soUE)SIP :w_.tcm Jo uonendwo) g auandiy

= () (9) ()

P VN L P SO W S

P DY Wy W WY W I Ry PNy

ﬂ-. '
: 3 te g %
i [1-F1e [1-f1-fe [ T_.__ﬁ [1-f1-1lo | T_._Eﬂ [1-f1-1jo
[fefe (et + E*__.T% [f'sle (1o (il
-
.
MOOTOCE . NN . SRR PORAATEs J BRSO,

'_.‘ TS




.........

LI B Al

,”, .

L]
i

RS M Ao A A bt £

£

-

35

person. Meanwhile, the time difference between speech patterns is
nonlinear, therefore a nonlinear matching algorithm is requiered in
order to obtain good recognition results. A special technique called
time warping has been proposed by Sakoe and Chiba (1978). An exam-
ple is shown in Figure 2.5 where z = a,a; ... a, is the reference pattern
and y = byb; ... by, is the test pattern. Each component a;, b; of string
xz, ¥y can be a feature vector or a scalar which represents a signal seg-
ment. (The position of each component g, b; in the grid matrix is

slightly different from what we have used previously.)

De finition 2.7 The time warping distance between strings £ and v is
™ X
a’(z,y)= kE d(c(k))
=]

where

d(c (k))=d(i(k),j(k)) = llay@) - b5l
and k is the index of common time axis.

Two major differences between time warping and the general
string-to-string distance can be pointed out immediately. First, one
component, i.e., symbol, in warping function can be used more than
once. For example, component a4 in Figure 2.6 has been used to com-
pared with 63 and b,. Second, the components may be skipped without
any cost. Although the general string distance can be modified by let-
ting /(a,a2)=0 and D(a,b)=0 for a,b € I, to simulate time warping,
there are other restrictions on the time warping function, for e:_(ample.
slope constraint. Slope constraint will eliminate excessively steep or
gentle gradient from the warping function. For details of slope con-
straints and computation of time warping distance, see (Sakoe and

Chiba, 1978). The weights used for time warping are different from




-----------------------------------

36

[ S5Y1

Figure 2.5 An example of dynamic time warping.




L anea st S S S 4 P Shardt S Sentt Attt

v ow Twe e U LA e .
WA ST NS -

‘.'f.-".‘ ) . ',“‘v

37

|
i
i
-
!

Q.

2/, \2/ * 4

Figure 2.6 Examples of some seismic recordings in struclural damage
assesment.

T e e

R

. ANCS <+ ENENEA KNG




4
]

<,__~—
I’-..v
2 KN

.

bee
h:'. -

AL AL LR A O

D o .'-".'.'.,",. b S NG
0 P RRSREEE Faleais

-------------

38

those for insertion, deletion and substitution, and can be tailored to fit

specific applications.

A path constraint similar to that of general string distance (see Fig

2.3) can also be applied here, i.e.,
. n .
i) 2 (k)| < 7

where r is the path width. This will prevent warping function from hav-
ing unrealistic matches. Sakoe and Chiba (1978) proposed a path con-

straint
li(k)—j(k)| =7

This window is along the diagonal axis i(k)=j(k). Since the dynamic

programming proceeds from point (0,0) to point (n,m), the window
should be along the diagonal axis i(k) = —:—l-j(lc) as shown in Figure 2.3.

It has been shown by Sakoe and Chiba (1978) that the symmetric time
warping distance has higher recognition accuracy than asymmetric

time warping distance.

In some applications, specifically string distance computation for
damage assesment, one component in one string is equivalent to the
summation of several components in another string. For example, in
Figure 2.8 the top two segments may come from the seismic recordings
of a buildings without damage while the bottom two segments may
come from the same building with certain degree of damage. If we con-
sider each component in Figure 2.6 as an appropriate measurement
thenbz=a3+04+a;+ag+a;,and dp =cp + c3 + cy, since by is adis-

tortion of a5, a4, a5 ag and a,, and dp is a distortion of ¢, c3 and cg.

AP - T R e T CidiJhadRT




n“"' P'_X 17"..-, A LA '1. A AT,

Ll A

kb A
-t

Plr“r‘

MR 0% -4 SPTRARAIARIAT B> 44

39

Therefore we can modify the slope constraints and local distance func-
tions in Sakoe and Chiba (1978) and use them for distance computation.
The modified slope constraints are shown in Figure 2.7. Since the local
distance functions min(i,j) are symmetric, the modified time warping
distance is also symmetric. The local distance functions min(i,j) are

changable as we will see in chapter III.
C. Normalized Distance

All the distance measures discussed so far are absolute distances.

For example, consider two pairs of strings z,, ¥, and z, and y,

T, = aaabbbcecddd
Y1 = acabbbcecdbd
Ty = ad

Yz =cb

The distance between z, and y; is two (substitution errors). The dis-
tance between z, and y, is also two (substitution errors). However,
when taking the whole string length into consideration, string pair z,
and vy, are more similar than string pair z, and y,. This shows that
equal absolute distance does not necessarily indicate equal similarity.
Sakoe and Chiba (1978) have proposed a normalized distance for
dynamic time warping, which is equal to division of the absolute dis-
tance by the total length of the strings. When absolute distances are
equal, the normalized distances tend to favor longer strings. This same
idea can be applied to general string distance computation with inser-

tion, deletion and substitution.

PO S PR SO e St N SR W - S L S A;...w-.M-A,L.‘-h,-.a..,.....-.i




4

. . O .
A n' o I‘A v . -
IR
s 2
L SRR AP A SR

4

v - ¥
R INARS

'Y.Iv. . 1Y Y N

vy T

TN ST Y NN T VY T
' AT e

- —— — WY B T

DA e i R P

40

| [ 6[4.5~1]+1a;—b; |
b._, 6[1,51 = min 16[i—1,j—1]+|a,-—b-

! 8li—1.j 1+ | as by |

bj (iaj)

b;_ [6[4~1,5 ~2]+ |0y —bj—b;-4 |
' 6[ij]=min| 6li-1,j—1]+|ay~b;]
6[i-2,j—1]+|0a;_+a;—b; |

32 A1

by 6li=1.5=8)+ | as=b;—b; 1=bj 2|
8li~1,j—2)+ |ay—b,; —b;_, |
b 6[1,7] = min 6[i—1,7—1]+]|a;=b; |

2 6[i~2,5 —1]+ | a;_y+a;—b; |
P[i -3,j —1]+|a;_z+a;_y+a; —b; |

33 B2 B Y

Figure 2.7 Examples of slope constraints and corresponding local dis-
tance function of modified time warping distance.

- . . . . - - -, . . . - - .
P i e M A B PP I A A N A P N o e




41

2.2.2 Similarity Measures Based
on Likelihood Concept

The string distance measures discussed in the previous section are

for nonstochastic models. In stochastic language, every string is asso-
ciated with a probability (Fu and Huang, 1972). Therefore, we use pro-
bability, instead of weight, to characterize the transformation. Some of
the stochastic context-dependent transformations have been proposed,
for example, substitution has been proposed by Fung and Fu (1975),
substitution and insertion have been proposed by Lu and Fu (1977b).
Here we add context-dependent deletion transformation. We still use
Ts, T; and Tp to represent substitution, insertion and deletion
transformation respectively. Associated with 7Tg, T} and Tp we use Pg,
P; and Pp for transformation probabilities. Transformations with

context-dependent probabilities are defined as follows:

Ts, Pg(b|a)

(1) e ws | w,bws for alla,b € T, where Pg(b {a) is the

probability of substituting b for a.

Tp, Pp(b |ab .
(2) wabwy |2 p(b [ab) wbwy for all @ € T, b € £, where
i Pp(b|ab) is the probability of deleting a in front of &.
- ' Ty, Pr(b :
(3) wawy | L 1(bea) wibaw, for all b € £, a € T, where

P;(ba |a) is the probability of inserting b in front of a.

where w;, wp € T°, and

¥R .4 kS Y3 -
(SRR A S ’l'.v.-x ir: u

bEEPS(b la)+b§E'PD(b Iab)+b§}lpl(ba le) =1

o

foralla € X.

“ l ."'-‘.. ECC I

..... PSR i I N W S VU - -




42

The probability associated with the transformation of one string
from another is called stochastic similarity. A higher transformation
probability between two strings means they are more similar. Similar
to the various weights for nonstochastic cases in Section 2.2.1, we can
also define many different types of transformation probabilities, for
‘example, context independent, terminal independent or transformation
independent. Since they are the simplified versions of the one just
defined, we will only use the above one as an example in the following.
De finition 2.8 The stochastic similarity between strings z and y ,

dS(z,y), is defined as
d¥(z,y) =p(y | =)

= max g;(ylz)

where

g;(y |z) is the probability of transfomations J which derives y from

The transformation probability » (¥ |z) is the maximum probability

.;:.‘ among those associated with all the possible transformations from z to
8 y.

. Theorem 2.4 d(z,y) is symmetric if and only if Pp(a |ba) = P;(ba |a)
& and Pg(b|c) = Ps(c |b) forallb,c €L, a €L

: The computation of stochastic similarity can also be carried out by
E dynamic programming technique A local probability function replaces
;! the local distance function of nonstochastic cases. However, the proba;
. bility function selectes the maximum of the probabilities which come
{ from below, lefi{ and lower left, see Figure 2.8 for a graphic illustration.
?

{

&




LA R

o

AR

43

Pp(bjs1laybjyy)

8li-1,j) 6li.j]

Fr(bja;egla;y,)

——

6[i-1,5-1] élij—1]

Figure 2.8 Computation of partial distance for stochastic models.




— ———— — e ————— - Wy YW e T W T R T I T m T TS T TR WS o e e e .

44

m Algorithm 2.3 Computation of stochastic string similarity
: Input: Twostringsz =a,a; ... ae,,;and y = b, by ... by byn g
where a;, b; € T for all 1<i<n , 1<j<m, ay 4y = &,

b,. +1 = &, and the probabilities associated with transformations

p on terminals in £ and {&}.
' Output.: stochastic similarity d°(z,y).
Method:
(1) é6[0, 0] := 1;
(2) fori:=1ton dod[:,0] :=6[i—1,0] - Pp(b,|a;b,);

(3)for j := 1 tom do 6{0,5] := 6{0,j ~1] - Pj(bja,la,);
(4) for 1 :

1ton do
for 7 := 1 tom do begin
6[,7] := max {6[1.5=1] - Pr(bjoieylayar),
6[i—-1,7~1) - Ps(bjla;), 6[i—1,7] Pp(bjs1la;b;41)3:
end;
(5) a5(z.y) := 6[n,m];

We can also use a global path constraint here to speed up the com-

putation.

Similarity measure is one of the fundamental constituent of pat-
tern recognition. In some applications, for example, string-matching,
the recognition accuracy relies almost entirely on the accuracy of simi-
larity measure. Even the error-correcting parsing is closely related to
similarity measures. We will discuss the relation between EC (error-
correcting) parsing and similarity measure in the next section. The dis-
tance measures defined in this chapter are not metric. They have the
properties of positivity and symmetry, but do not necessarily have the

property of triangle inequality. The accuracy of actual similarity

L P LT S A S S S W el el sl ame B cmhentiosob AP S P GNP SO T W N

DRGSR W S oot -



L W T TRTT TR TR TR TR T T T T T T e e TS T T Ty T T T TR T Ta T T T T T T T Ty e T e T TR TR T T T

45

measure depends on many parameters. The most significant one is the
assignment of weights and probabilities. The weights and probabilities
assignment is case-dependent and wusually heuristic. Previous

knowledges and statisties may guide the assignment in some cases.

2.3 Error-Correcting Parsing

Error-correcting parser (ECP) has been proposed in the areas of
compiler design (Aho and Peterson, 1972) and syntactic pattern recog-
nition (Fu, 1977). When a conventional parser fails to parse a string, it
will terminate and reject the string. An error-correcting parser pro-
duces same results as a conventional one when the string is syntacti-
cally correct. However, it also generates a parse for the string even
when it has minor syntax errors. The significance of error-correcting
parsing in compiler design is still controversial since it may misinter-
prete the programmer’s intention. However, its significance in syntac-
tic pattern recognition is unquestionable. The most important reason
is the noise problem. The noise may come from sensor device, environ-
ment or data communication. These will cause segmentation error and
primitive recognition error, and therefore result in syntax error In
many cases, the pattern grammars are constructed from a finite set of
training samples, and then used to recognize a larger set of test sam-
ples. Therefore, it is not surprising that the conventional parsers usu-

ally fail to work.

The error-correcting parsing algorithms can be classified into two
categories, one uses minimum-distance criterion the other uses

maximum-likelihood criterion. The minimum-distance error-correcting




46

parser (MDECP) is for nonstochastic models where string similarity is
measured by distance. The maximum-likelihood error-correcting
parser (MLECP) is for stochastic model where string similarity is meas-

ured by probability.

The ECP in this chapter is different from other existing ECP’s in
two aspects; first, it uses symmetric similarity measures, second, it

does not use expanded grammar.

2.3.1 Minimum-Distance Error-Correcting Parsing Algorithm

For the purpose of generality we will discuss context-free grammar
(CFG) throughout this chapter. Since finite-state laguage (FSL) is a
subset of context-free language, all the principles described here can
be applied to FSL as well. Of course, the implementation can be
modified to increase the efficiency. Given a CFG G and an input string
y € I°, a minimum-distance error-correcting parser (MDECP) gen-
erates a parse for some string x € L(G) such that the distance between
z and y, d(z,y) is as small as possible. Since we have defined several
different string distance, therefore different error-correcting parsers

can be constructed.

Aho and Peterson (1972) have shown a minimum-distance error-
correcling parsing algorithm which uses the Levenshtein distance. We
will call their algorithm "Algorithm A" for short. They first transformed
the original grammar into an expanded grammar which includes all the
possible error productions. Then, they modified the Earley's parsing
algorithm so that the number of error productions used is stored in the
item list. The productions of the expanded grammar, P, is constructed

from P as follows:




Ca" 2 e A S N A R AN A it i A A A L AR R Y D e

47

(1) For each production in P, replace all terminals a € T by
by a new nonterminal E, and add these productions to P'.
(R) Add to P’ the productions
a)S + S
b) S'+ SH
c)H - HI
d)H -1
(3) For each a € £, add to P’ the productions

aAdd

a)E; > a

b)E, »bforalldinZ, b £a
c) E, » Ha

d)] »a

Catei e i i Al o
. PR . .

e) E, » A, Ais the empty string

In step (3), the productions E, - b, 7 » a and E, » A are called
terminal error productions. The production E, - b introduces a sub-
stituition error. I -+ a intorduces an insertion error. E, - A introduces
a deletion error. For the Levenshtein distance, a constant weight, e.g.,
1, is associated with each of these productions. It will also handle the
type 1 WLD d"(z,y) and type 2 WLD d"3(z,y) in a similar way. For the
type 1 WLD, weight o is associated with production £, -+ b, weight ¥ with
E;, » A and weight p with / - a. For the type 2 WLD, weight S(a,b) is
associated with production £y -+ b, weight D(e) with E, » A and weight
I(a) with J » a. However, the problem will occur when it comes to type
3 WLD d"3(z,y). In order to maintain the symmetric property we must
have D(a,b) = I(a,b) for allb € £, @ € £ as mentioned in Theorem 2.3.
The expanded grammar will have difficulty in handling context-

dependent transformation weight.

P PO P S S PP - & s om




»

i I Agrig
O L "'.‘A'. .

48

-

Although we can modify this expanded grammar to handle insertion
weights, as did in Fu (1982), it still can not handle the deletion weights.
Since the productions associated with context-dependent deletion
weights will be something like bE, -» E,, D(a,b), but this is not a
cont.exf-free production rule, even not a context-sensitive production
rule. While the expanded grammars seem unable to solve the sym-
metric problem: we can implement the ECP without the expanded

grammar. This idea of ECP without expanded grammar has appeared in

e PN el .
B PO Ot

Lyon (1974) where type O distance is used. His main concern is for
practical reasons: to save space and execution time. Our proposed ECP

using type 3 WLD is a modified Earley’'s parsing algorittn where the

substitution, insertion and deletion transformations are examined dur-

ing the parsing.

L2k e Se8 and o
PR

et ot

Algorithm 2.4. Minimum-Distance Error-Correcting Parsing Algorithiim
Mnput: A grammar G = (N,L,P,S), an input string
y = b,b,...b, inZ° and the weights of transformations
between symbols.
Output: The parse lists Iy, /4,...,/p,, and d(z,y) where
z is the minimum-distance correction of ¥, z € L(G).

Method.

(1)Setj =0.Add [S~ - a.O.d] to I; if S-+a is a production in P.

(2) Repeat step (3) and (4) until no new items can be added to ;.

(3) If [A»a - BB,i,¢] is in I;,and B -7 is a production in P. then add
item [B -~ - 7.7.,0] to J;.

(4) If [A»a - i, ¢]isin /; and [B-F - A7,k .¢] is in J;, and if no item
of the form [B-BA - v,k,p] can be found in 7/;, then add an item

S A S e . 3 PR . . -
PRSI IS I SR S T e . P NI S Y PRI VRN S 1 - - P ST P N T L




i
E':':
-
-
»
hé
P~

I T
[ S REIN

- REREE b SRRy

49

[B-+BA - 7,k ,t+¢] to I;. Store with this item two pointers. The first
points to item [B-g-Av.k.¢] in I;; the second points to item
[A-a - i8] in ;. 1f [B»B4A - 7,k,¢] is already in I;, then replace ¢ by
£+¢ together with the pointers if ¢>£+¢.

(5) For each [B~a - aB,i,¢] in [;, add [B»ac - B,1,£+D(b;,2)] to J;.
Store with this item a pointer to item [B-a - ag,i,£] in J;. If no more
new item of this form can be found, go to step (6); otherwise, go to step
(2).

(8) If j=m, go to step (9); otherwise j=j+1.

(7) For each item [B-+a - aB,i,¢] in J;_, add [B-+aa - 8,i,£+5(a,b;)]
to I;. Store with this item a pointer to item [B-+a - aB,i,£] in J;_,.

(8) For each item [B-~a - aB,i,¢]in I;_; add [B-a - aBi.E+](a,b;)]
to J;. Store with this item a pointer to item [B-a - af.i.£]in J;_,. Go to
(2).

(9) If item [S»a - ,0,£] is in I,,, then d(z,y) = & 1f there are more
than one such items, then choose one with the smallest £. Exit.

In this algorithm, step (5) examines deletion transformations, step
(7) examines substitution transformations and step (8) examines inser-
tion transformations.

The right parse of the input string can be constructed from the
parse lists. Since we use erfor-correcting parsing, il is possible that

there may exist several parses associated with one input string, but we

only choose the one with minimum distance.

Algorithm 2.56. Construction of a right parse from the parse lists
Input: Ig, I,.... I;m, the parse lists for string ¥y = b3b5 - - b,
OQutput. A parse w for z, = € L(G), and the distance




50

d"3(z,y) is minimum among all the strings in L(G).
Method.

(1) In I, choose an item of the form [S-+a - ,0,£] where ¢ is as small

as possible.

() Let m be the empty string initially, and then execute the routine
R([S-a - ,0,],m) where R([A~»a - B,i,m],7) is defined as follows:
a) If B=A, then let m be the previous value of w followed by the

production number of 4+a. Otherwise, 7 is unchanged.

b) If [A»a : B,i,m] has only one pointer, then execute the item
where it points to. It may be R([4-a-B,i.¢]5-1),
R([4»a - aBi.tlj—1) or R([4»a - aB,i,t).j) where a=a'a. Return.

c) If [A»a - B,i,mn] has two pointers and a=a'B, then execute
R([B~7 - ,h,ul,j) followed by R([A~+a - BB,i,¥],h). Return.

d) If a=A, return.

The parse constructed by Algorithm 2.5 is for z, £ € L(G), i.e,, no
error productions are included. Usually there is no need to know the
error productions (or equivalently error transformations); but if we d.o
need to know, we can store the information like D(b;,a), S(a,b;) or
I(a,b;) in each item. Then we can extract the exact transformations
when we execute R routines. If we are only interested in the minimum
distance, for example, to determine the class membership, then Algo-

rithm 2.4 will be sufficient.:

Algorithm 2.4 is more powerful (because its parse is in terms of

symmetric distance) and is at least as efficient as Algorithm A.

------------------ MUY e L U IR IP TN U SRS WY [JRGT r YP S U W U AP I SO EPUS U TP S Y




Y

ORI
PR
ot N teate
P

W
P

x
.

Ty
[ R i S

.
. . 3
R v P

o ——
‘Y S

LT, Rkt
RO et e

ne
i
AR

F A AN IINCA

REEES P30

h Jian e 4
ol Wn v T,
PRI

51

Lemmma?2.1: The time complexity of Algorithm 2.4 is O(n3) where n is

the length of the input string.

The proof of lemma 2.1 is similar to that of (Aho and Peterson,
1972). Since each item list J; takes time O(j?) to complete, therefore
the total time is O(n3). We can also show that the number of produc-
tions and the number of items in item lists of Algorithm 2.4 are less
than those of Algorithm A. Therefore, less numbers of productions and
items have to be considered when we add new items to item lists. For
each item [B-a- af,i,t] in I;_, in Algorithm 2.4 there is an item
[B=a - E f,4,¢] in I~y in Algorithm A. Let us consider the following
transformations:

(1) Swubstitition. There is an item [E,- - b,j-1,5(a,b)] in J;_,
where b=b; and [E;+b - ,j—1,5(a.b)], [BaE, - B,1.£+S(a,b)] in J; in
Algorithm A. There is only one item [B-aa * §,i,6+S(a.b;)] in J; in
Algorithm 2.4.

(2) Deletion. There is an item [E,~» - A, j—1, D(a)] and {B~akE, - 8,
i, &+D(a)] in J;_; in Algorithm A. There is only one item
(B+aa - B,i,6+D(b;,a)] in I;_, in algorithm 2.4.

(3) Insertion. There are items [E, +Ha,j—1,0], [H~ - [,7-1,0] and
[+ b, j—1, I(b)] where b=b; in I;_, and iteins [/-+b - ,j—1,I(b)],
[H»1-,j=1,1(b)] and [E,»H - a,j—1,I(b)] in I; in Algorithm A. There
is only one item [B-a - af,i,£+7/(a,b;)] in J; in Algorithm 2.4.

Since all the other items not involving error transformations are
unchanged, therefore we can see that the time complexity of Algorithm

2.4 is no more than that of Algorithm A, i.e., the time complexity of

Algorithm 2.4 is O(n3).

A 'aleat ol atebatal Wy L e oA : N » o v ..




Rt S L4 R IS aar I3 I e e st - N A T 4 et i SRt T T

52

We have shown a minimum-distance error-correcting parsing algo-
rithm for any nonstochastic CFG. The distance is symmetric and can
be any one described in Section 2.2. For a stochastic CFG, we can also
construct a maximume-likelihood error-correcting parser which will be

discussed in the next section.

2.3.2 Maximum-Likelihood Error-Correcting Parsing Algorithm

Given a stochastic context-free grammar (SCFG) G, and an input
string y € £°, a maximum-likelihood error-correcting parser (MLECP)
generates a parse for some string € L(G;) such that the probability
p(y |z)p(x) is the maximum, where p(y |z) is the deformation proba-
bility from string ¢ to ¥y and p(z) is the probability associated with
string z in L(G;) (Fu, 1982). There may exist more than one derivation
trees for each z € 'L(Gg) unless the grammar G; is unambiguous.
Meanwhile, there will be many possible transformations from string z to

y. We define p(y |z)p(z) as the one with maximum probability, i.e.,

plylz)p(z) = max 9; (y |z)pi(z)

where p;(z) is the probability associated with the tth distinct deriva-
tion of string z and g,(y (z) is the probability associated with the jth
distinct transformation from z to y. The probability p(y {z) which is

equal to max ¢,;(¥ |z) is exactly the same as what we defined for string
J
similarity in Section 2.4.

The proposed MLECP is a modified Earley's parsing algorithm. It
does not require an expanded grammar and is applicable to ambiguous

grammars. The transformation probabilities as well as the insertion,




Ta

-y

| agaon

RE . . S I . L . P G RV e T N B S ]

53

deletion and substitution transformations are examined during the
parsing. The partial probabilies are stored in each item list. Pointers
to the previous items are also stored in the item lists to save parse

extraction time.

Algorithm 2.6. Maximum-Likelihood Error-Correcting Parsing Algorithm
Input: A stochastic grammar G; = (N,Z,FP,,S), an input string
y = b,bs...b,, in £°, and the probabilities of transformations.
Output.: The parse lists I, /4,...,/,,, and p(y |z)p (z) where
z is the maximum-likelihood correction of ¥, z € L(G;).

Method:

(1) Set j = 0.Add [S» - a,0,p]to [; il S ]: a is a production in P.
(2) Repeat step (3) and (4) until no new items can be added to /;.

(3) If [A»a - BB,i,¢] is in I;,and B ?, v is a production in P, then

add item [B- - 7,5,9] to J;.

(4) If [A»a - ,i,£] isin I; and [B—+B - A7,k.¢] is in I;, and if no item
of the form [B-+84 - 7,k,¢] can be found in I;, then add an item
[B+BA - 7.,k ,t¢] to I;. Store with this item two pointers. The first
points to item [B-+B: Av,k,¢] in I;; the second points to item
[4»a-,i,¢] in I;. 1f [B=BA - 7,k,¢] is already in [;, then replace ¢ by
¢ ¢ together with the pointers if ¢<&-¢.

(5) For each [B-a - aB,i,¢] in I;, add [F-aa - B,i,¢ Pp(a|b;a)] to
I;. Store with this item a pointer to item [B-a - af,i,¢] in J;. If no
more new item of this form can be found, go Lo step (6); otherwise, go

to step (2).




54

(8) If j=m, go to step (9); otherwise j=j+1.

(7) For each item [B-a - aB,i k] in Ijy add
[B+aa - B,i,&Ps(bj|a)] to I;. Store with this item a pointer to item
[E-’a ' aB,i,E] in Ij—l‘

(8) For each item [B»a - aBi,E] in I add
[B+a - aB,it Pr(bjala)] to I;. Store with this item a pointer to item

[B»a - aB.i¢]inl;j_y. Go to (2).

(9) If item [S—»a - ,0,¢] is in I,, then p(y |z)p(x) = & If there are
more than one such items, then choose one with the largest ¢ Exit.

The right parse can be extracted from the parse lists. Algorithm
2.5 can be applied here except that in step (1) we choose an item of the
form [S-a:,0,£] in I, which is as large as possible. The parse
extracted here contains no error productions. We can also store and
extract the error transformations as did in the last section. The time
complexity of Algorithm 2.6 is also.O(na) since the procedures are

almost identical to those of Algorithm 2.4.

Lemma?2.2: The time complexity of Algorithm 2.6 is 0(n3) where n is
the length of the input string.

Suppose G, is an expanded grammar, then tane stochastic language

generated by G, is

T
LG)={ypu) lyeZiply)= ¥ ¥Yaqlylz)p(z)
zel(G,)i=1
where r is the number of distinct transformations from string z to v,
g;(y |z) is the probability associated with the i** transformation and

p(z) is the probability associated with z. Although string ¥ is




55

generated by the expanded grmmar G,, the probability associated with
_ﬂ v, p(y), can be computed without the expanded grammar.

Algorithm 2.7. Computation of String Probability
Input: A stochastic grammar G; = (N,I,F,S), an input string
! y = bb,...b, inL°, and the probabilities of transformations.
3 Outputl. The probability associated with ¥, p (y), where ¥ is generated by
the expanded grammar G;.

Method:

P
(1) Set j = 0.Add [S» - a,0,p]) to J; if S > a is a production in P.
() Repeat step (3) and (4) until no new items can be added to J;.

q
(3) If [A»a - BB,i.£] is in I;,and B > 7 is a production in P, then

add item [B~ - 7,j.9] to J;.

(4) If [A»a - ,i.£]isin I; and [B-»B - Ay.k.¢] is in J;, and if no item
of the form [B-fA4 - 7.k,¢] can be found in J;, then add an item
(B+BA - 7.k ,&¢) to I;. If [B+BA - 7.k ,¢] is already in [;, then replace ¢
by p+£&-¢.

(5) For each [B+a - aB,i,¢] in I;, add [B-aa - 8,1, Pp(a|bje)] to

ESCR e S 4
Y PR

I;. 1f no more new item of this form can be found, go to step (6); other-

wise, go to step (2).

1
t

ey

&

(8) If j=m, go to step (9); otherwise j=5+1.

() For each item [B-sa - ap,i,t] in T add
[B+aa - 8,1, Pg(bjla)] to J;.

. St . . - " N R W aberstnatn
LT, PN, WP S U O AN U N U Wiy W SHD SR VO W v e | a 'y




T 't‘v‘ vy
. “ .

56

(8) For each item [B-a - af,i,t] in I ) add
[B-+a - aB,i.tPr(bjala)] tol;. Goto(2).

(9) For all itemns of the form [S-a; -,0,¢]) is in I, sum up all the
&is. py) =L &. Exit.

Algorithm 2.7 is useful in computing the class conditional probabil-

““.YH'."

ity which is used in Bayes' de¢ision rule. Given a string y, Algorithm 2.7

is able to compute the probability that ¥ is generated by Gs', ie,
p(y|G;). Even for a string z € L(G;), we can compute the probability
p(z | Gy) where G; is the original stochastic grammar. This capability is

important since from generation point of view it is very difficult to find

the summation of the probabilities of all the possible derivations. But if
we go the other way, i.e., by parsing, it is very easy to get the probabil-
ity. If we are dealing with G; only, i.e., to find the probability p(z | G5), -
z € L(Gg), then we should skip step (5), (7) and (8) of Algorithm 2.7.
Since these steps are for deletion, substitution and insertion deforma-

tions.

p A 2Ee S S0 2 e o
' ;'J"_xvv—lr i ,‘ri. o -
AN R v

2.4 Recognition Procedures for Syntactic Patterns

=

' In syntactic pattern recognition, if classiﬁcation is the only pur-
E'l pose, then we can use either ECP or NNR. Given a CFG G and an input
f string ¥ € £°, a MDECP generates a parse for some string z € L(G)
E"_: such that the distance between z and y is as small as possible. This
E“ distance is defined as the distance between string ¥ and set L(G). On
f’;' the other hand, a MLECP generates a parse for some string * € L(G;)
E‘ such that the probability p(y |z)p (z) is the maximum. This probability
4

SRS RSO

P U PP Ly S " 3 o S S B A N S e T et T gt Rt »n.wj

r"
»‘-~.
N




57

is defined as the likelihood that string y belongs to set L(G;). The
nearest-neighbor rule for the case that G is nonstochastic computes
the distances between y and all the string z, z € L(G), and select the
one corresponding to the smallest distance. The nearest-neighbor rule
for stochastic case computes the probabilities p(y |z) for all z € L(G;)
and select the one such that the product p(y |z)p(z) is the maximum.

The probability density function for z, p (z}, is assumed known.

If L(G) is finite then either MDECP or NNR can be used to find =
and d(z,y). Similarly, if L(G;) is finite then we can use either MLECP or
NNR to find z and p(y|z)p(z). The results of ECP and NNR may be
different depending un how the grammar G end G; are constructed. If
L(G) or L(Gy) is not finite, then the NNR will not be able to test the
whole L(G) or L(G;). Thus, it is necessary to find a finite subset of L(G)
or L(G;) so that the NNR can be implemented. This is also true even
when L(G) or L(G;) is finite but with a size hard to manage. However,
neither MDECP nor MLECP has difficulty in dealing with infinite
language. Therefore, it is advantageous to use MDECP or MLECP when
L(G) or L(G;) is infinite, since the recognition accurancy of NNR may
be degraded because of the limited size of prototypes. But in real

application, we usually encounter a finite set of samples and need to

construct or infer a grammar from these samples. In this case, the
recognition results of these two approaches will be equal if the con-
structed or inferred grammar generates exactly the original samples.
Therefore, the only factor aflecting the selection of algorithm is compu-

tation speed. The NNR uses dynamic programming technique whose

ST T T A AR N

time complexity is O(n®) where m is the length of input string. The

complexity of MDECP and MLECP is also O(n?® if the grammar is

04 ",7‘7,"."1 Lf' '.‘.‘..‘,.'..-.l-




n e Y. ——
Y ) PR

58

unambiguous. Although both ECP and NNR have 0(n?) time complexity,
NNR is usually faster than ECP. We will see an example in chapter III.

2.5 Conclusion

We have discussed four types of string similarity measures in this
chapter, and the conditions for them to be symmetric. We also pro-
posed parsing algorithms to deal with the symmetric problem which
can not be carried out by any other ECP. These algorithms are at least
as efficient (computation-wise) as other parsing algorithms. A
minimum-diatance criterion i§ used for nonstochastic models and a

maximum-likelihood criterion is used for stochastic models for both

ECP and NNR. Bayes' decision rule can be applied when dealing with
multiclass problems of stochastic models. The class conditional proba-

bility p (z | i), where C; = L(G;), can be computed by Algorithm 2.6.

In NNR, the distance computation employs a dynamic programming
procecdure which makes it very easy for implementation in VLSI archi-
tectures. VLSI architectures for ECP and string distances computation
will be reviewed in Chapter V. We also propose a VLSI architecture for

computing the string (Levenshtein) distance in Chapter V.




- P AR AR UL LA A g S 4 Al A AR A AC. B & st ) SR 1 ¢

59

CHAPTER III

APPLICATIONS OF SYNTACTIC PATTERN
RECOGNITION TO SEISMIC CLASSIFICATION

3.1 Introduction

In this chapter we apply syntactic approaches to two real seismic
classification problems. One is the seismic discrimination between
nuclear explosion and natural earthquake, the other is the seismic
classification in structural damage assesment. These waveforms have
been sampled and digitized before we obtain the data. However, vari-
ous noises exist in both cases. Certain prepocessing procedures there-
fore must be imposed to remove those noises. Section 2 to 5 discuss
application to seismic discrimination, and Section 6 shows application

to damage assesment.

Seismological methods are so far the most effective and practical
methods for detecting nuclear explosions, especially for underground
explosions. Position, depth and origin time of the seismic events are
useful information for discrimination; so are the body wave magnitude
and surface wave magnitude of the seismic wave (Bolt, 1976; Dahlman
and Israelson, 1977). Unfortunately, they are not always applicable and
reliable for small events. It would be very helpful if the discrimination
is based on the shori-period waves alone. The application of pattern

recognition techniques to seismic wave analysis has been studied




r ~d T Chimi . S aa e S s oy T T Ll Tt iath Sdh Aad ans — T Y Y T, T _-y-,»-—_--‘]

60

extensively in the last few years (Chen, 1978; Tjostheim, 1978; Sarna
and Stark, 1980). They all use short-period waves only for discrimina-
tion. Most of these studies concentrated on feature selection. Only
simple decision-theoretic techniques have been used. However, syntac-
tic pattern recognition appears to be quite promising in this area. It
uses the structural information of the seismic wave which is very
important in analysis. Seismic records are one-dimensional waw'leforms.
Although there exist several alternatives (Ehrich and Foith, 1976; San-
kar and Rosenfeld, 1979) for representing one-dimensional waveforms,
it is most natu'ral to represent them by sentences, i.e., strings of primi-
tives. In order to make it easy for analysis we divide the pattern
representation procedure into three steps, namely, pattern segmenta-
tion, feature selection and primitive recognition, though they are corre-

lated.

In this chapter, we apply two diflerent methods of syntactic
approach to the recognition of seismic waves. One uses the nearest-
neighbor decision rule, the other uses the error-correcting parsing. In
the first method, a pattern representation sybsystem converts the
seismic waveforms into strings of primitives. The string-to-string dis-
tances between the test sample and all the training samples are com-

puted and then the nearest-neighbor decision rule is applied. The

second method contains pattern representation, automatic grammati-
cal inference and error-correcting parsing. The pattern representation
subsystem performs pattern segmentation, feature selection and primi-
Live recognition so as to convert the seismic wave into a string of primi-
tives. The automatic grammatical inference subsystem infers a finite-

state (regular) grammar from a finite set of training samples. The

PO e -7 . . . .
VI R D T WU TPRE WY W WL I TP UL TP TP IV ) P N P I S G W PN S WP PR R w— e et oy




w T - LAMALAsREC s Sdul et SR O A ™ N — W v T T I o 1

61

error-correcting parser performs syntax analysis and classification.
Human interaction is required only at the training stage, mostly in pat-

tern representation and slightly in grammatical inference.

3.2 Preprocessing

The two major problems in preprocessing of digital signal is to iden-
tify the appropriate portion for recognition and to eliminate noise. For
example, the voiced portion should be seperated from the unvoiced
portion in speech recognition; each ECG cycle should be determined in
ECG analysis, and the 'signal’ should be recognized in seismic analysis.
We will not discuss these in any detail, though they are important. The
main reason is the variety of their characters. The seismic signals in
our experiment were selected from a huge seismic database. They all

have equal length and have been aligned at the onset.

Noise is always a major problem in digital signal processing. Filter-
ing is the most common technique to remove noise, high-pass, low-pass,
band-pass, just to name a few. These filters eliminate certain regions of
frequency component. Sometimes this may not be desired. For exam-

ple, in Figure 3.1, there is a pulse-like noise within the seismic signal.

This kind of noise is sometimes called glitch. If we apply the signal

through a low-pass filter, it can not eliminate the pulse completely,

.‘ meanwhile all the high frequency components of the signal will also be
eliminated. This is not what we want. To avoid this, we need a local
f‘ filter which will remove only the pulse noise and leave the rest of the
- signal unchanged. This local filtering is possible because the normal

signal does not have pulse in it, the local filler can deiect the pulses

L‘L TSP E T W SR GHIT S04 W W P P AP RPN . et : PR St Y G S S S LIPS Dbl a ‘-__.,-‘A._._-k_..\._'_,.s.k




62

and then remove them. This local filtering needs human interaction to
specify threshold. Different regions need different thresholds. We can
see from Figure 3.1 that the whole signal can be divided into three por-
tions. The relatively flat portion at the beginning is the background

noise, which should not be confused with the noise we want to elim-

DA PRSI e
R L L L NS

v, N R T R -
S P L L

inate. The next portion has the strongest signal which is called the sig-
nal portion. After the strong signal portion is the weak signal portion
which is called coda. A point 1 is said to be a pulse noise if and only if it

satisfies the following two conditions:

(1) absolute magnitude of point i, |a(i)|, is greater than or equal to
the threshold.

0 Y ——
Y ARARRAAA AL AL et
R N . PP
X 1 PR TR St .

(2) absolute value of a(i+1) + a(t—1) - 2 * a(t) is greater than or

equal Lo the threshold.

The second conditior. seperates the pulse noise from strong signal por-

tion since the pulse nnise is much sharper. After point i is detected to

H‘illr!- S
P} PR .
P o .
o E AT
Al R IR et

be a pulse noise, it can be eliminated by letting
a(i) = (a(j) +a(k)) 72

where 7 < %, £ > 1, point j and k£ are not pulse noise and no point

.
v

] Bl oo
O Ceaet e
e LTt

between j and k is normal signal point.

Py PR
2

3

Figure 3.1(a) is a signal before filtering, (b) is the same signal after

ot
} AN

RASLIRA
’

fillering. Figure 3.2 is another example, but it has more than one pulse

R
}
1

noise. From these two examples we can see the local filter works suc-
cessfully in eliminating the local pulse noise while retaining the original

signals.

Another noise problem of seismic signal is the drift during record-

e
v
jn ° ¢
s,
L
‘

..

ing. As can be seen from Figure 3.3(b), the whole signal is somewhat

e . L. e - . A
PPN 2a. - P SR B PERE A S VI SR S S

FRBTIPIUIY WP W WL W WL LA W NS LY LR SN S



- B Tt L T SR SR I S el o e ot S e Sl D SIS R R A e Tl
e TR TR TR T AT e WA LT, TE T.T LTI RaEH i E R
.......... PR

63

ca?

(b

Figure 3.1 (a) An example of seismic signal with pulse noise (glitch). (b)
The same waveform after local filtering.




Tigure 2.2 (a) Another example of seismic signa! with severz! puire noise
(glitches). (b) The same waveform after local filtering.

| IR

SRS e A I A T T T

B TIPS S S | - - L
e R PR L I A S I . e e e e N : :
L UL VLI W Wi Wiy Ty W, U, P, PRI T N SR W W SN . ST Sl S U0 . NS S GPR WA, W I ST Lo PO .




65

R .-‘,-.l'_ 1
AR e LAY b hc . ST

below the zero line, especially the beginning portion which is far below
the zero line. In order to retain the details of the original signal, we use
N a low order polynomial regression of the original signal and then sub-

tract this polynomial regression from the original signal. The fitness of

i

the regression is tested by least-squares criterion. We use a Sth-order

A
‘

polynomial regression for the seismic signals. The regression program
is taken from the book by Carnahan, Luther and Wilkes (1969). The
entire procedure consists of two parts, i.e., global adjustment and local
adjustment. In global adjustment, the polynomial regresssion is applied
to the whole signal and then followed by subtraction. Figure 3.3(c) is
the result after the regression and subtraction from Figure 3.3(b). We
can see that the small segment at the beginning still drifts from the
zero line slightly. Then we apply regression and subtraction to this
small segment; this is called local adjustment. The result after local
adjustment is shown in Figure 3.3(d). Another example is shown in Fig-
ure 3.4. Figure 3.4(a) is the original signal, (b) is the original signal with
the zero line. We can see that the first portion of this signal drift above
the zero line and the rest of the signal drifts below the zero line. Figure

3.4(c) is the result after global adjustment and (d) is the result after

local adjustment. The sequence of applying global adjustment first and

then local adjustment is important. If we reverse the order, it will not

W e p

)
o

produce the same result as we have otherwise. In our present experi-

X
;S ment the segment for local adjustment is selected manually. One alter-
3 native is to use piece-wise regression to select the optimal breaking
point. This is carried out by breaking the whole signal into two seg-
E_l- ments and then finding regression of each segment. The breaking point
which results in miminum deviation is the optimal breaking point. This
u
[

v P4 ARNE
,_-_-_.!d‘ e
..
3
'




T e T R T R T e T T T L T L T A T e Y L T T YT R T L T T TR T MY O, T T T .Y TR, T e e T

66

{8

VYT

cacs SN o A AN 1o A% D Mg
Tt
S . S I %

Figure 3.3 (a) An original seismic signal. (b) With zero-line added for com-
parison. (c) After global adjustment. (d) After local adjustment.

-

PR . - . . St e T S R -
R W PR S AP N L I LI I G S S G S St St VI SR L W PP A U SRy S




{
"

X

LY T TR TR Ty Y TR e Y TR T T Y T TR TR T e T (TR e e e e T R TE T e e T TR R TR LEFLTY LAY YT T T e T e T e

4
.

T

67

{a?

Ty T T, P———
AT L Coe
Y.t R A A s

Figure 3.4 (a) Another example of seismic signal. (b) Zero-line is added
for comparison. (c) After global adjustment. (d) After local adjustment.




-

68

must be done on a section of contiguous points. It is time consuming
and therefore is excluded from our experiment. After the above
preprocessing procedures we can perform segmentation and primitive

selection.

3.3 Automatic Clustering Procedure
for Primitive Selection

It has been mentioned in Fu (1982) that the pattern primitives
should serve as basic pattern elements in describing the structural
relations and they should be easily extractable, usually by nonsyntactic
methods. The selection of primitives depends largely on the type oi
waveforms. In some applications, the primitives are prespecified by
human expert, e.g., in Giese, et al. (1979). We would like to investigate
the possibility of nonsupervised learning in primitive selection, there-
fore, we use an automatic clustering procedure to select the pattern
primitives. This is important because human selection of pattern prim-

itive may not always be available, besides, it may be unreliable.

3.3.1 Pattern Segmentation

A digitized waveform to be processed by a digital computer is usu-
ally sampled from a continuous waveform which represents the
phenomena of a source plus external noise. For some cases, such as
ECG and carotid pulse wave analysis (Horowitz, 1975; Stockman, et al.,
1978), every single peak and valley are significant, therefore these
waveforms can be segmented according to the shape. For others, like

EEG (Giese, et al., 1979) and seismic wave analysis in our case, a single

LI A Rt N S R - PRI G NP W 1 (U U A NHE YO W WIS U T VO ¢
Lol o At e o o g e et




69

péak or valley does not contain significant information, especially when
! the signal to noise ratio is low, therefore they should be segmented by
RO length, either a fixed length or a variable length. A variable-length seg-
mentation is more efficient and precise in representation, but it is usu-
i ally very difficult and time consuming to find an appropriate segmenta-
tion. A fixed-length segmentation is much easier to implement. If the
length is well selected it will be adequate to represent the original
waveform. There is a compromise between the representation accu-

racy and analysis efficency. The shorter the segmentation is, the more

- e e
N e <.

accurate the representation will be. But the analysis becomes more

»
b
[
[

E
E

inefficient since the string is longer and the computation time is pro-
portional to string length. Another problem is the noise. If the segmen-

tation is too short, it will be very sensitive to noise.

Pattern segmentation is closely related to primitive selection. The
segment length in speech analysis is 20 milliseconds (DeMori, 1972,
1977), and 1 second in EEG analysis (Giese, et al.,, 1979). For short-
period seismic signal, a segment length of around 6 seconds is a good
choice. A segment of this length contains adequate information and has
been used by many other researchers (Chen, 1978; Tojstheim, 1975).
Since the sampling frequency of our data set is 10 Hz, a 6-second period

contains 60 points.

We have done experiments on other segment lengths, they are 40
points and 80 points. We selected 41 explosion records out of 111 and
59 earthquake records out of 210 as training samples. The recognition
result for 60-point segment length is 91.0%, i.e., 20 misclassifications
out of 221. When we chose 40 points as segment length, according to

the primitive selection procedure in Seclion 3.4 the best selecton for




70

primitive number is 18. For primitive number 18, the recognition
result is 72.9%, i.e., 60 misclassifications out of 221. If we chose primi-
tive number 13 as we did in 80-point segment length, the recognition
result is still 72.9%, though the detail of classification is different. When
we chose 80 points as segment length, the primitive number selection is
14 and the recognition result is 73.8%, i.e., 58 misclassifications out of
221.

Aithough this experiment is by no means conclusive, it does show
that a segment length of 80 points is an appropriate selection for
short-period seismic signal. A shorter segment is too sensitive to noise
and a longer segment is too complicated for a primitive. The selection
of segment length is ususlly a subjective judegment and depends on the

characteristic of the signal waveform.

3.3.2 Feature Selection

Any linear or nonlinear mapping of the original measurements can
be considered as features provided they have discriminating capability.
Both time-domain features and frequency-domain features have been
used for seismic discrimination . For example, complexity and autore-
gressive models are features in time domain; spectral ratio and third
moment of frequency are features in frequency domain (Dahlman and
Israelson, 1877). Since we segment the seismic wave, complexity and
spectral ratio features are implicitely contained in the string structure.
Furthermore, the segment may be too short for a model estimation if
we use shorter segment. Therefore, we selected a pair of commonly
used features, i.e., zero crossing count and log energy of each segment,

which are easy Lo computle and contain significant information. Easy to




.....
........

L P FeTa e e e
L e e e

0l 7<i“’,~"< .

i

I\
b

~—w

71

compute is a desired property for primitive extraction in syntactic
approach. Zero crossing count roughly represents the major frequency
component of the signal and log energy indicates the magnitude of the
signal. These two features should be able to characterize the signal
segment. Other features may also serve as good candidates. An advan-
tage of syntactic approach ié that feature selection is simpler since
features are extracted from smaller segments, and fealure selection is
not that critical as is in statistical approach. Since there is no optimal
feature selection algorithm, features are usually subjectively selected.
Although there are criteria such as between cluster and within cluster
scatterness, they have no direct relation to final recognition results.
While other features, including K-L expansion, do not show any
superiority in recognition results in our preliminary experiments, we

will stick to the zero crossing count and log energy.

Since we are experimenting a new approach for seismic discrimina-
tion, we do not particularly emphasize feature selection. In fact, simple
features like these give favorable result in our experiment. This indi-
cates that syntactic approach utilizes structural information instead of

sophisticated feature measurement.

3.3.3 Primitive Recognition

The selection of primitives varies very largely in digital signal
recognition. Line segments from linear approximation of signals have
been used in ECG analysis (Horowitz, 1975, 1977). Parabola and line
segment have been used in carotid pulse wave analysis (Stockman, et
al., 1976). These primitives are mainly used to describe the shape of

the signal waveform. When the shape of the signal waveform is not




72

important, other types of primitives must be selected. For example in
spoken word recognition (DeMori, 1972, 1977), silence interval, stable
zone and lines are used as primitives. In EEG analysis (Giese, et al,,
1979), a group of seven primitives has been specified and a linear
classifier is used to recognize the testing segments. What should we do
if the signal on hand is not as predictable as speech signal, nor can we
specify the primitives as in EEG analysis. One possible solution is by
clustering procedure. A clustering procedure will classify any number
of signal segments into certain number of clusters in an optimal way,

which means minimization of some criterion function.

If the number of primitives, i.e., the number of clusters, has been
selected then any typical clustering technique, e.g., XK-means algo-
rithm, can find the optimal clustering. Now the difficult part is how to

select aa appropriate primitive number. For example in EEG analysis,

. how do we know seven is the best selection. Is there any other better

selection? How does the selection of primitive number affect the final
recognition results? We will discuss all of these questions in this sec-

tion.

Without lost of generality we assume that each signal segment is
represented by a vector of features z = [x,, Z,, ..., 2 )¢. It is noted that
we use decision-theoretic approach for primitive selection. Other
representations may also serve the purpose as long as the similarity
between signal segments can be computed. If the feature space is iso-

tropic, then the Euclidean distance can be used as a measure of simi-

larity and it is invariant under translation or rotation. However, the

invariance can be attained by normalizing the data before clustering.

M e Na e mtat mlalad et ok ool o ek o ak PP S TP VORI R WP ST WS o a




Ly IV T

73
Suppose we want to partition n samples z!, z2 ..., z" into k& dis-
joint subsets Cy, Cy, ..., C;. Each subset represents a cluster. The sam-

ples in the same cluster are more similar than the samples in different
clusters. One typical approach is to define a criterion function that
measures the clustering quality of any partition of the samples. Then
the problem is to minimize of maximize the criterion function. One of
the most well-known criterion function is the sum-of-squared-error cri-
terion (Duda and Hart, 1873). Let n; be the number of samples in clus-

ter C; and m; be the mean of those samples, where

1
;R e——— T
m‘ n'l- z ?C‘

The sum-of-squared-error criterion is defined as

k
‘]¢= 2 2 ||z—mi||2

Another set of criterion functions are derived from scatter matrice.

First, let us introduce some definitions.

Mean vector for ith cluster:
Total mean vector:

m=lyz=Ll$onm
n ¢ n ;=

Scatter matrix for ©th cluster:

A PLIP SR Wl YOS . P Bl mvitdimiiorsinedi N S G V- P J PP NP G S PP




' v -

Ml PR AR TR
P R R N B A
e IR ’ L,

Y Y e e we——
A A

B X

T T

74
Si = E}q (z = m)(z - my)*

Vithin-cluster scatter matrix:

k
Sw=2 S5

i=1

Between-cluster scatter matrix:
X t
Sp = Y ny(m; -~ m)(m; ~m)
i=1

Total scatter matrix:

Sp= Y (x—m)z -m)t

zel

1t follows obviously that Sp = Sy + Sp

We define the optimal partition as one that minimizes Sy or max-
imizes Sp. In doing so we need a scalar measure of the size of a scatter
matrix. The trace of Sy is the simplest measures. Other well-known
measures are the determinant of Sy and the trace of Sy'Sp. For the
sake of computational simplicity we will only consider the trace of Sy
as criterion function. The trace criterion is defined as:

tr Sy = )’i tr 5; = i Xz -m||2=J,
i=1 izl z€(

which is exactly the same as the sum-of-squared-error criterion. Since
ir Sp =tr Sp +tr Sy and {r Sy is independent of how the samples are
partitioned, therefore minimizing ¢r Sy is equivalent to maximizing

tr Sp. Where




r
s

r'r.'.
Bl
1ee-ls
a0 A

. Y:'A""
S X bete vt

PR
SR

L AR g S s 4

- N
Y

a

75

tr Sp= 5 ns limg —m |2
If the number of cluster is known, then the K-means algorithm can
be applied to find a clustering which minimizes the criterion function,
i.e., the sum-of-squared;error Jo. When the number of clusters is unk-
nown, at least two approaches can be used to determine the optimal
clusfer number. These two approaches turn out to have similar results

in our experiment.

Both approaches use a bottom-up hierarchical clustering pro-
cedure. This algorithm repeats the clustering procedure fork = U, k =
U-1,.,k =L, where U and L are the specified upper and lower bound
respectively. The first approach selects the optimal cluster number by
examining how the criterion fuaction J, changes with &. If these n
samples are really grouped into p well seperated clusters, then J;
should increase slowly until £ = p and then increase much more rapidly
thereafter. The algorithm for bottom-up clustering procedure is shown

as follows:

Algorithm 3.1 Bottom-Up Hierarchical Clustering
Input: A set of n unclassified samples, an upper bound U
and a lower bound L.
Output: A sequence of optimal clusterings {for the number
of clusters between U and L.
Method:
(1) Let £ = U, k is the numbpoer of clusters, and arbitrarily
assign cluster membership.

(2) Reassign membership using K-means algorithm. If




-------

-

..................
..........................

76

k<l, stop.
(3) Find the nearest pair of clusters, say C; and Cj, % # J.
(4) Merge C; and Cj;, delete C; and decrease k by one,

go to step 2.

The distance between two clusters is defined by

a2 (C.Cy) = |Imy —my ||

where m;, m; are the mean vectors of clusters 1,j respectively.

Just as F-statistics can be used in univariate case to test the
significance of group seperation, a pseudo F-statistics (PFS) can be
applied in multivariate case provided that a single measurement of
similarity between samples, e.g., Euclidean distance, is assumed (Vogel

and Wong, 1978). A pseudo F-statistics is defined as:

tr Sp (n — k)

PFS = 45, k=D

As the number of clusters increases, {r Sp will always increase while
tr Sy will always decrease. However, the PFS value will not monotoni-
cally increase due to the effect of (n—k) / (k—1) which is smaller as &
becomes larger. Therefore, there will be a peak of PFS value some-
where in the middle. Since, like F-statistics, the PFS shows the
significance of group seperation, therefore a larger PFS value means
the clusters are more compact and well seperated. The crietrion here
is to ’se']ect the maximum PFS value; the corresponding cluster number
will be optimal. For example, in Figure 3.7, the maximum PFS value
appears at cluster number 13, therefore 13 is the optimal selection for

cluster number.

AT VIPUNE ST W P UG W Vel S Wiy W

Y Vh U i Wl VN VI WIS /R SR VN,




77

3.4 Syntax Analysis

If the classification is all we need, then the nearest-neighbor deci-
sion rule is preferred because of its computational efficiency. On the
other hand, if a complete description of the waveform structure is
needed, we have to use parsing (or error-correcting parsing). An error-
correcting parser (instead of conventional parser) is required for most
practical pattern recognition applications. Since noise and distortion
usually cause conventional parsers to fail. It is not unusual that even a
noise-free, distortion-free pattern can not be recognized by a conven-
tional parser, since the pattern grammar is often inferred from a small

set of training samples.

3.4.1 Nearest-Neighbor Decision Rule

The concept of nearest-neighbor decision rule in syntactic
approach is similar to that in decision-theoretic approach. The only
difference is in distance calculation. Four types of string distances

have been discussed in chapter two, and they can be computed using

dynamic programming method (e.g., Algorithm 2.1).

3.4.2 Error-Correcting Finite-Siate Parsing

Before parsing can take place we must have a grammar, which can

be either heuristically constructed or inferred from a set of training
samples. In order to study the learning capability of the syntactic

method, we choose the grammatical inference approach.

Phrase stricture grammars have been used to describe patierns in

rv,

syntactic pattern recognition (see T[u, 1882). Lach pattern is

e

1

- ad

i)
R I CERERE NS
o) S e

Aol ol ol ol
It




i

Ei

Sl s

..._. L.
. e Cat RATSAR
Y SNV A

.............

78

represcnted by a string of primitives which corresponds to a sentence
in a language (tree or graph in high dimensional grammars). All strings

which belong to the same class are generated by one grammar.

Grammatical Inference

A set of sentences S* is a positive sample of a language L(G), if S*
C L(G). A set of sentences S~ is a negative sample of a language L(G),
if S~ ¢ L(G).

A positive sample S* of a language L(G) is structurally complete if
each production in & is used in the generation of at least one string in

S* (Fu and Booth, 1975).

We assume that the set S* is structurally complete and S* ¢
L(Gp), where Gp is the inferred grammar. Theoretically, if S* is a
structurally complete sample of the language L(G) generated by the
finite-state grammar G then the canonical grammar Gy can be inferred
from S*. A set of derived grammars can be derived from G¢. The
derived grammars are obtained by partitioning the set of nonterminals
of the canonical grammar into equivalence classes. Each nonterminal of
the derived grammar corresponds to one block of the partition. Since
the number of possible partitions is too large it is infeasible to evaluate
all the partitions. Therefore some algorithms such as k-tail algorithm
(Biermann and Feldman, 1972) has been suggested to reduce the
number of derived grammars. These algorithms have one disadvantage.
The reduced subset of derived grammars may not contain the source
grammar. However, it will be sufficient if we only interest in an estimate
of the source grammar. There are at lea<t two situations where a gram-

matical inference algorithm can be used. In the first case there exists

......

s n'a e m-




R Cati otk SRLaE 45 SN rd
B RO 3 R

7
.

7 ORI RS ]
AR e ReH
UL At te T
N » AR

-y o T
AR

e
o Paas e

79

a source grammar which generates a language and we want to infer the
source grammar or automaton based on the observed samples. In the
second case the exact nature of the source grammar is unknown, the
only information we have are some sentences generated by the source.
We assume that the source grammar falls into a particular class and
infer a grammar which generates all the training samples, and hope-
fully will generate some samples belonging to the same class. If a nega-
tive sample set is given, the inferred grammar must not generate any

sample in the negative sample set. Grammars more complex than

TaT W, T TTe T T

finite-state grammars and restricted context-free grammars (in Chom- -

sky hierarchy) can not be irferred efficiently without human interac-
tion. Furthermore, there exists no obvious self-embedding property in
seismic waves, finite-state grammars will be sufficient in generating
power. Therefore we choose finite-state grammars to describe the

seismic waves.

The inference of regular grammars has been studied extensively.
The k-tail algorithm finds the canonical grammar and then merges the
states which are k-tail equivalent. This algorithm is adjustable, the
value of k controls the size of the inferred grammar. Another algorithm
called tail-clustering algorithm (Miclet, 1980) also finds the canonical
grammar, but then merges the states which have common tails. The
original algorithm is not as flexible as the k-Lail algorithm, but will infer
a grammar which is closer to the source grammar in some cases. We
can modify the merge criterion to make it more flexible. Since the
grammar is inferred from a small set of training samples, we can only
expect that the inferred grammar generates all the training samples

and will generate other strings which are similar to the training

WL s dtdbtnd ek \ dasiadind: [ e adhotredinastion P IR .-
LA i W T g "IN WOUTIPRLr WU JUOUL IO TP W PN A W W e > Bntrifie,




TR

80

samples. The generating power of the inferred grammar relies entirely
on the merge procedure. If no merge occurs at all, then the inferred
grammar generates exactly the same training set, no more no less.
Since all the seismic records have the same length and alignment in
our experiment, the sentences representing these signals also have the

same length.

Error-Correcting Parsing

After a grammar is available, either by automatic inference or by
manaul construction, the next step is to qesign a recognizer which will
recognize the patterns generated by the grammar. If the grammar G is
finile-state, a deterministic finite-state automaton can be constructed

to recognize the strings generated by G.

Segmentation and primitives recognition errors due to noise and
distortion usually occur in practice. Conventional parsing algorithms
can not handle thene situations, therefore, an error-correcting parser

must be used (Fu, 1977).

Since all the sentences in our example have the same length, only
the substitution error needs to be considered. For each production 4 ~»
aB and 4 - a in the original grammar we add 4 » 68 and 4 » b
respectively to the covering grammar, where A,. B €e N,a,b € Z,L £ a,
N is a set of nonterminal symbols and T is a set of terminal symbols.
Difierent weights can be assigned to different error pfoductions, there-
fore, result in a minimum-cost error-correcting parser. The assignment
of weights is a crucial problem. We have used the distance between
ciusters @ and & as the weight for s.ubstituting a by b and vise versa.

Since a finite-state grammar can be represented by a transition




|
ind

81

diagram. Thus, a minimum-cost error-correcting parsing is equivalent

to finding a minimum-cost path from the initial state to a final state.

Algorithm 3.2. Computation of Minimum-Cost
Input: A transition diagram with n nodes numbered 1, 2, ..., n,
where node 1 is the initial state and node n is a final state,
and a cost function G;(a), for 1<i,j<n, a € Z, with G;j(a)
= 0, for allZ and j. An input string s.
Output: m,, the lowest cost of any path from node 1 to node n

whose sequence is equal to that of the input string s.
Method:

(1) Set k = 1.
(2) For all 1sj<n, m,; = min {m,; + C;(b), for all 1sk<n}, where
b is the kth symbol of input string s.

(3) f £k < |s|, increase k by 1 and go to step (R). If k = s |, go to
step (4).

(4) Output my,, which is the lowest cost from node 1 to node n fol-

lowing the move of input string s. Stop.

Cost function (;;(a) denotes the cost of moving from state i to
state j while the input symbol is ‘@’. m;; is the minimum cost from
state 1 to state j. The computation time of Algorithm 3.2 is linear, i.e.,
O(n), where n is the length of the input string. This algorithm is a
finite-state parsing algorithm where only substitution error is con-

sidered. The production number can be stored with Gj(a), and the

parse can be stored with m ;.




82

If insertion and deletion errors are to be considered, then the
parser is still similar except that we have to compute and store the
information V(T, S, @) which is the minimum cost of changing character
'a’ into some string which can change the state of the automaton from
state T to S (Wagner, 1974). The inclusion of insertion and deletion
errors makes the error correction more complete, but assigning

appropriate weights to insertion and deletion error is even more

difficult.

3.5 Experimental Results on Seismic Discriminat. -

The seismic data used in our experiments are provided by Profes-
sor C. H. Chen of Southeastern Massachusetts University. The data
were recorded at LASA in Montana. Each record contains 1200 points;
the sampling frequency is 10 points per second. The original data con-
tains 323 records. Due to some technical problems in data conversion
only 321 records were received. Among them 111 records are nuclear

explosions and 210 records are earthquakes.

We have selected forty-one earthquake records and fifty-nine explo-
sion records as training samples. Each record is divided into 20 seg-
ments where each segment contains 60 points. Two features, i.e., zero-
crossing count and log energy, are computed from each segment.
Table 3.1 shows the criterion function J; and its increment from cluster
number 18 down to 2, which are the results of applying Algorithm 3.1 to
the lraining segments. We can see that the increment of J, is small
before and until cluster number is equal to 13 and then becomes much

larger thereafter. Therefore, we say that 13 is an optimal selection of

8




P I T T N S S S

[ﬂ TABLE 3.1
:f'- The criterion function, increments of criterion

function and the classification results of -
different cluster number selections

Cluster Criterion Increment Classif.
No. function of c. {. %
16 359 - 80.1
15 374 15 81.9
14 392 18 85.5
13 416 14 91.0
12 456 40 84.6
11 510 54 83.7
10 565 55 85.5
9 632 67 81.9
8 698 66 76.5
7 783 85 68.8
6 899 116 5%.9
5 1069 170 64.3
4 1360 291 57.9
3 1756 396 -
2 2464 708 -

— n
'-“l'l

K |

i e

I TP I PR R S G, " FPRE UL TUUVNN Y - VA WO SR SRR SRR

Py
)

'

|

!
L.‘
)

l

3

b
I
»

’




W
*
¢

Lol autuk 200 2 PSS indi-uir d LR
e . o 3 Ty
PRUSMTIN e e ALY

.

" Ty ’
o L T -.-'. RIS
LRV ] S S e Dee

-

&

St

v
PR L

-~

R
1

Ty T Y

T

L g r—— v WrP— T n T
L. (R . R .

84

cluster number. Also shown in Table 3.1 are the recognition results for
different cluster number selections. The number of clusters is
equivalent to the number of primitives. The selection of 13 clusters
gives the best recognition result. The f{r Sp curve which is monotoni-
cally increaseing is shown in Figure 3.5, and the {r Sy curve which is
monotonically decreasing is shown in Figure 3.8. The PFS curve is
shown in Figure 3.7. The maximum PFS value appears at cluster

number 13, which is identical to the selection in the previous approach.

Although there is a secondary peak at cluster number 8 in Figure
3.7, this one does not have any significant meaning. The recognition
resﬁlts of Table 3.1 show no indication of peak at that location. How-
ever, there does exist a secondary peak in recognition accuracy which
occurs at cluster number 10. The possible reasons for these
phenomena are that first, our seismic samples are not very compact
and well seperated; and second, we reassign membefship after each
merging, this may affect the PFS value and recognition results. In spite
of the secondary peak, the selection of the dominant peak gives the

besi results and should be the rule to follow.

The centers of the 13 clusters and the number of members in each
cluster are shown in Table 3.2. The cluster centers are further plotted
in the two-dimensional feature plane in Figure 3.8. Portions (17 seg-
ments) of two examples, one is a typical explosion; the other is a typical
earthquake, are given in Figure 3.9, which have both original waveforms
and string representations. The second segments of the twn waveforms
look the same but have different primitive assignment. This is because
both symbol 'a’ and 'c’ have very small magnitudes compared with the

other symbols (see Figure 3.8), therefore the frequency difierence can

.3




"AD-R124 398 A SVNTRCTIC RPPRORCH AND YLSI RRCHITECTURES FOR SEISHIC 2/3
SIGNAL CLRSSIFICRTION U) PURDUE UNIY LAFAYETTE IN
SCHOOL OF EL ECTRICRL ENGINEERING H LIU ET AL. JAN 83
UNCLASSIFIED NOB8@i4- 79 C-8574 F/G 8711 .

2




.‘-.whf.n.-h rFd PRI F .
N A TR
h.s. PRSP RPN o,
L.
~.\V
&
b’/
3
-\ ~ o —_
I\h - e
-
?.. ‘ " ~T .
r * I X
y, . o~ :
~.. W& et
a1 a N
¥ ¥
~ ' -
-Ll
s t
. f,
. N
, 4 ;
¥ .
hv.- A . ’
& - .
E < - -
Wy.) T ..
et -~ | .
- T
N- - -qw
N
;-.,
vh. - »
4
» -
. 1 .
p + . .
¢ ’ .
va Y ” B ». v .
‘ P ot |
. “ ST ¥ )
v.n. ' .
" it
p : F
g Do _
L - I
: A el N O -] Ne)
B Nl - :
. —
v
] =
B 4 K
g E m m 4
i} o -m l.
2 >
LEENHWH"_“H

|

] -

125

. MICROCOPY RESOLUTION TEST CHART
- NATIONAL BUREAU OF STANDARDS-1963-A

L]
J .‘ v
. ———— e ——— 4
* A G ————— ¥
—— —— E—— -
I's .




85

Mo .21

377.10 4

3113.99 1

SSB
e
3

2
&! | 34 .67 -

£2061.36

1798 48

1535.35

£

O

AL

]
No. of

AT T S S NP P ..

10 12
clusters

o P U AP SR Y W\

W WO S S Y

19

Figure 3.5 tr Sp increases as the number of clusters increases.

AP AP P Y




. ¢l D)
- B
‘e B
e L et
P . P

86

8- jaess

380S.97

3400 .24

2994.31 4

2500.78 -

2163.04 -

SSK

1777.31 4

1371.59

965. 949

—

$60.137 v Y
2 9 10 ie 14 16

&£ o
[ B

No. of clusters

Figure 3.6 tr Sy decreases as the number of clusters increases.

. . . PR N . - . N YRS - . - . . . . . -
VIR S UL LA W . PP PR DAL DRI AR AT DS Wy iy G Gy PP S Y S SO SR SO e e A, Py W W . T

_




87

5 1424%.10

1901.67 -

1379. 24 -

1356.81 -

1334.38 4

PFS

1311.9% 4

1289.51 -

1267.00 -

12w 65 4 ' r — - y
2 H 6 s 10 12 1 16 18

No. of Clusters

Figure 3.7 The PFS curve where the maximum value occurs at rumber
13.

-
‘e
e~ T T Ve Y- B - T

I o T R A A S A U S Caeca e - - a—ad




TABLE 3.2

The center of the 13 clusters, the number
of members in each cluster and the primitive
symbol of each cluster.

Cluster Featurei1 Feature?2 No. of Primitive
No. (z-CC) (L.E) Members _ Symbol

1 -1.718192 -2.108372 67 a
2 3.336939 -1.740116 36 b
3 -.180208 -2.387472 43 c
4 -1.229273 .887182 187 d
5 467317 1.048923 179 e
6 .426978 .113834 233 f
7 -.407192 1.283638 209
8 -.320940 440148 245 h
9 1.431115 .168968 73 i

10 -.308735 -.573480 e11 J

11 1.485801 -.940290 145 k

12 -1.413536 -.255781 116 1

13 476520 -.756842 256 m

...............................




-y 4

—

>
o
&
(=
(1]
o
[+
-5

Cose §

~1.00000 - m +k

+b

-1.83000 -1.11675-.267300 343730 1.07300 1.80625 2.537S0 3.2667S %.00000
Zero—-crossing Count

- Figure 3.8 Cluster centers of the 13 clusters in the two-dimensional
b. feature plane. The corresponding primitive symbols are also presented.
P_—ﬂ

N

S NUEE P WA N TP VAP A LA AT S NPT AR UG N P SR s




'A-A.'-\"'.V-‘.,.-.-,~*,-\'.u.,‘-.“'.".-.".‘.'.‘v..'-.-,'-v."-.'.“.'.‘.?."
L T S S A N A R P T P P N ST T A S “tet et Nt

P
R TARNL RN

a0

et

N a a adggedgggegdgee

R S e e T S A S S A S A S A
Figure 3.9 Examples of the seismic waveforms and corresponding
strings. The top one is a typical explosion, and the bottom one is a typical
earthquake.




e

y

L a4
e

- AR A
. aogaentatd -
LS I S

not be seen due to the resolution of the drawing. Algorithm 2.1 is
applied for string distance computation, and the nearest-neighbor deci-
sion rule is used for classification. Since all the records have equal
length and alignment, only substitution errors are considered. The
weights for substitution errors are given in Table 3.3. The weight
between pattern primitives is defined as the normalized distance
between corresponding clusters. Classification results and computation
time of the 221 test samples are shown in Taeble 3.4 where 201 records
are corréctly classified, i.e., 91% correct rate, with an average time of
0.07 sec for each record. The experiments were run on a VAX 11/780

computer using Pascal programming language.

We use the k-tail finite-state inference algorithm to infer pattern
grammars for the seismic waves. When & = 19, the inferred grammar is
exactly the same as the canonical grammar. When k£ < 19, some
equivalent states will be merged, therefore, result in fewer number of
states and productions. The number of states and productions for vari-
ous values of k& is shown in Table 3.5; it is getting smaller as k gets
smaller. Average parsing time of one string and percentage of correct
classification for different k£ are given in Table 3.6. The parsing time is
shorter when k& is smaller. This is due to the smaller number of produc-
tions and states. On the other hand, the correct perentage is also
smaller when k is smaller. This is because derived grammars generate
strings which do not belong to the positive sample set. Another reason
of worse performance is that in our case only those states with longest
tails are merged. In terms of transition diagram, this means only those
states which are close to the initial state are merged. Because the k-

tails of those states are empty, and only are they k£-equivalent. This is




TABLE 3.3

Weights for substitution error

a b c d e f g

h

1 m

0  0.95 0.29 0.59 0.72 0.58 0.68
0.950 0.67 1.00 0.75 0.65 0.91
0.29 0.67 0  0.87 0.66 0.49 0.69
0.59 1.00 0.66 0  0.32 0.35 0.16
0.72 0.75 0.66 0.32 0  0.18 0.17
0.58 0.65 0.48 0.35 0.18 0 0.27
0.68 0.91 0.69 0.16 0.17 0.27 0

0.55 0.80 0.53 0.20 0.198 0.15 0.16

0.73 0.51 0.57 0.52 0.25 0.19 0.40.

0.39 0.72 0.34 0.34 0.34 0.19 0.35
0.64 0.38 0.42 0.62 0.42 0.28 0.55
0.35 0.94 0.46 0.24 0.43 0.35 0.35

0.49 0.57 0.33 0.46 0.34 0.16 0.42

0.55

0.80

0.53

0.20

0.19

0.15

0.16

0

0.33

0.19

0.43

0.24

0.27

0.73 0.39
0.51 0.72
0.57 0.34
0.52 0.34
0.25 0.34
0.18 0.19
0.40 0.35
0.33 0.19
0 0.36
0.36 0

0.21 0.34
0.54 0.22

0.25 0.15

0.64

0.38

0.42

0.63

0.42

0.28

0.55

0.43

0.21

0.34

0.56

0.19

0.35 0.49
0.84 0.57
0.46 0.33
0.24 0.46
0.43 0.34
0.35 0.16
0.85 0.42

0.24 0.27

0.54 0.25 |

0.22 0.15

0.56 0.18

0 0.37

0.37 0

et ]



g

' fata

-

83

TABLE 3.4

Classification results using
nearest-neighbor decision rule

Average time for Percentage of
one string (sec correct classification
91.07%
0.07 201 records are correctly

classified out of 221




,_ ILI:.;- _--;‘A;V-‘Q AR o = '-‘_‘ e e A “_ -‘. --- .'. »-.- _‘. e e e e T T e ‘.-' DS,
o
.~..I
o
[
at
oo 94
{:
~:,
g A
‘;’51 The number of nonterminals, productions and negative samples
‘ accepted by the inferred grammars. The inference algorithm
is k-tail algorithm with different values of k.
~. ) Explosion ' Earthquake No. of
N K negative
2 Nonterm. Product. | Nonterm. Product. | samples
\ No. No. No. No. accepted
S 20 681 720 939 996 0
19 681 720 939 996 0
g 18 669 720 928 996 0
17 | 641 692 900 970 0
- 16 804 656 856 926 0
. 15 566 618 804 874 0
14 525 577 747 817 0
v 13 | 484 538 688 758 0
12 443 495 629 699 0
2 11| 402 454 570 640 0
i o| 320 372 452 522 0
o 7 238 280 334 404 0
o 5 156 208 216 286 0
=y

.................




..........

The average parsing time and percentage of correct

TABLE 3.8

classification of the error-correcting parsers with
different values of k.

k | Average parsng time Percentage of correct
for'one string (sec) classification (%)
20 2.55 91.0
19 2.65 g91.0
18 _2.72 84.2
17 2.67 81.0
18 2.54 73.8
15 2.33 72.8
14 2.15 71.6
13 2.10 69.7
12 2.03 89.7
11 1.83 71.0
9 1.47 69.2
7 1.15 68.8
5 0.77 -

PO T . A P




96

the consequence when all the training samples have equal length. Nor-
mally, the merged states should distribute uniformly between initial

and final states. One final note about Table 3.6 is that the decrease of

parsing time is true for any cases, but the decrease of correct percen-
tage may not be true for other cases because the experimental results

of our limited data set are neither representative nor conclusive.

We also try the tail-clustering finite-state inferene algorithm. Since
there are no two states which have common sentences, therefore no
merge occurs. The productions and nonterminals are the same as
those of k-tail algorithm with & = 20. Again, this is due to the charac-
teristics of this specific data set, and should not be interpreted againét
the algorithm itself. We can modify the condition for merge so that two
states are merged when the distance between some of their member
sentences is less than a threshold. This will guarantee a reduction of

grammar size, but again the recognition results may be unpredictable.

3.6 An Application of Syntactic Seismic
Recognition to Damage Assesment

Damage assesment of a structure after strong earthquake is a very

complex problem (Yao, 1979). It is usually performed by a structural

b N AREA LA .
i-, FA AR
B ea e

waie e W et

engineering expert who makes his or her judgement by personal experi-

o
-t
4

ence and professional knowledge. The key informations include charac-
teristics of the structure, observable damages, seismic ‘(vibration)
recordings and nondestructive testing results. Ishizuka et al. (1981)
have proposed a rule-based damage assesment system which employs

the fuzzy set theory and the production system with certainty factor to

ROEES | PAADUADIOS

&

[ S




infer the damage state. Its performance relies on proper assignment of

membership function and design of inference rules. The pattern recog-
nition techniques can also be applied to damage assesment, which is
based on the analysis of seismic recordings. Its advantages are easy to

impiement and contains no uncertainty factor.

Seismic recordings, i.e., acceleration and/or displacement record-
ings, are the only records which show the detailed response of the
structure during a strong earthquake. It is quantitative, complete and
objective. Therefore, if we want to apply pattern recognition techniques
to damage assesment, the seismic recordings are very good candidates.
A structure without damage will behave stiffer than the one with dam-
age. Therefore from the seismic recording, preferably displacement
recording for the reason of no high frequency noise, we can tell the

relative degree of damage.

Since each building is different in structure, we have to make
assesment individually. One possible solution is to compare the top
level displacement with the basement displacement. The basement dis-
placement represents the ground motion, i.e., the input to the building.
The deformation distance between these two waveforms will be small if
the building is damaged; otherwise, the deformation distance will be
large. Unfortunately good training samples are unavailable so far. The
real recordings are not only insufficient but also unclassified. However,
there are a few experimental data from the laboratory which can be

used as a starting point.

Figure 3.10 shows the top level displacement and basement
acceleration (at the bottom) during a simulaled earthquake test on the

model of a ten-story reinforced concrete building. There are totally

P T T W e - NP P N I P YUY WY S Y SN UM G PG MO P PR, . |




b." .
.

it

98

Runl

T '..‘.Tv'<'vi‘(-j

Figure 3.10 Top level displacement and basement acceleration (bottom).

P NI I T

PSR W SO NP U S WY VO AP

-.LALA.AJ




99

seven test runs. It is obvious from Figure 3.10 that the accleration
waveform is much more complicated than the displacement waveform.
Since they are convertible, we chose displacement seismogram for

comparison.

Since only the basement acclerations are available, we have to
compute displacements using numerical integration. The basement
displacements of the seven runs are all the same as shown in Figure
3.11, only the magnitudes are intensified from run to run so as to
assure more damage after more runs. The top level displacements are
shown in Figure 3.12. It is not diffucuit to see that the top level dis-
placement of run seven is more similar in figuration to basement dis-
placement than the top level displacement of run one is. This shows
that the building structure becomes softer due to the cracks, breaks
and other implicit damages. Some potential damages may not be seen
from the appearence of the building, but they will be shown on the
seismic recording since it reflects the actual structure response. This
is one of the reasons why the analysis of seismic recording is important.
The other reason is that we can compule the similarity, or deformation
distance on the other hand, between the waveforms which can be

further used in a knowledge-based damage assesment system.

Computation of the deformation distance between the seismic
waveforms are based on the modified dynamic time warping distance in
Section 2.2. Comparing Figure 2.6 with Figure 3.12 we will find that the

waveforms in Figure 2.6 are actually taken from those in Figure 3.12.

The slope constraints and local distance functions ar2 shown in Figure

3.13.

et A g 8 & A& A & _ w . m.3 .. - .. m & =~ a&a’x. .. « & a4 . - . o« s PN



.........................
T e S i T e T e s PR
D e T e R T

100

1, PP
. LSRN

Runi

> L g p—

AP . Pt

. e et
e e S R T

Rune

_4\\ Run3

Runt4

RunS

Runé

Run?

Figure 3.11 Basement displacement of the seven test runs.

........

- o .. . At e et T R I S S L S TN e . - . . . . P
el "2 3 LI Sy S PR Wl VP WD JRP L S I - WPRK TP A R PO PR S CE .  V A o




101

Runi
h
- Rune
o \NVW Run3
ﬂ
— M | A Runy
!
‘M RunS
U
NJ\W Runé
M Run?
Figure 3.12 Top level displacement of the seven test runs.
RTSRI, T R O T R ]




102

( :
6[1'—11.7 —L]+Ia'i-k216j-k-ll

l=1,2,i..,n
5[""-'-..7'-1]"'5"2 @ —g-1-b; |
=1
{ n=2 |

6(1,7] = min

Figure 3.13 Diagram of slope constraints and local distance function for
string distance computation in damage assesment application.




_.«‘,: 103

The selection of string representation and the selection of compu-
:! tational algorithm for string deformation distance are correlated. We
observed from the waveforms in Figure 3.12 that several local peaks are
j::'j : deformed and merge into a large peak. Therefore, we consider each
n peak as a component, i.e., primitive or symbol, of string representation.
' The next problem is how to describe each peak. Of course, shape and

geometric properties can describe a peak, they are far complicated

than what is needed. Besides, it is difficult to implement these features
in distance computation. The area of each peak contains the informa-
tions about the duration and amplitude of the peak. Since different
combinations of duration and amplitude may have same area, area
alone is ambiguous. But we don't need to worry about this problem
since we are dealing with recordings from the same structure, such
randomly contrast shapes will not occur. We developed a special string
deformation distance computation for this application, which is a
modified dynamic time warping distance as shown in Section 2.2.1. The
type of this deformation distance is ordinal, i.e., rank orders have
meaning, and interval, i.e., seperation between numbers is meaningful.
However, the lower and upper bounds of this distance is open, i.e., the
distance is in the interval (0, M) where M is the summation of the total

area of the two strings. For example, il z = a,0;...0,,, and y = b,b5...6,

then
15 n
= ; + b
M 1.=la1 jEI 7

Each seismic waveform =z is converted into a string of real
numbers, z = a,a;...a,, 2; > 0, such that the ith component of the

string, a;, represents the area of the ith pcak. The definition of the




——— » ot e s enesl aoum et Jovee seth sees iSa dres i JEagt Sensh Nh G Bend T T T e TR
| s e st v g e Snaud e esiutt e i it A T — e A Bl R I A . P

104

peak here is the segment between two adjacent zero-crossing points.
Therefore one peak may contain many local maxima and minima. It
often happens that small ripples and zero-crossings may exist due to
the noise. These noisy ripples can be removed by setting a threshold 7.
Only those peaks whose areas are larger than threshold T are con-
sidered as effective components. The waveforms are scanned from both
side until a peak larger than 7 is reached on each direction. The left-
most peak larger than 7 will be the first component of the string and
the rightmost peak larger than T will be the last component of the
string. This process will eliminate the noisy ripple before and after the
signal. The noisy ripples within the signal are combined with the
nearest peak which is greater than T. Therefore, only the significat
peaks are converted inte components of the string. The algorithm for
computing string deformation distance is similar to that of Sakoe and
Chiba's, only the slope constraints and local distance functions are

different.

The deformation distance between the basement displacement and
the top level displacement of each run is plotted in Figure 3.14. Since
each run of the test adds some damage to the structure, the degree of
damage is proportional to the number of tests. Greater damage makes
the structure softer, consequently the deformation distance between

the basement waveform and top level waveform is smaller. It can be

i

seen from Figure 3.14 that the deformation distance is getting smaller

T

-

afler more runs of tests. Figure 3.14 also shows that large damage
occurs during the first three runs since the differences of the deforma-

tion distance, i.e., the slope, are larger than those of the later runs.

—
Ml

ket




Tty w
PO MY M

’

T
poat, e

e ,
RLOORE S

"

. )
l'.l..v

1

105

171.0M0

155.766 4

139.692 4

183.619

107. 545 1

Distance

91.4718 1

[
L E
W A
£
A 4
o <
~ 4
o4
°

Run

Figure 3.14 Distance between the basement displacement waveform and
the top level displacement waveform of each run.

£ YUY SO S S




> Pt G AL A b A i e S i i i et ATl 2 e A BN P i B i St

A B M N " * RN - - - L.. - - I A T . - .t

106

In order to normalize the length of the strings come from different
event, the deformation distance in Figure 3.14 can be divided by the
length of the basement waveform so that the deformation distance of
different event can be compared. The domain of damage can be divided
into several intervals, for example, negligible, slight, moderate, severe,
etc. The deformation distance is used for classification of damage
degree. The classification depends on which category the deformation
distance of one event falls into. Other informations such as human
observations and system identification results are usuful auxilary infor-
mations, for example, to resolve the conflict when the distance falls at
the boundary. But system identification is a very complicated matter,
it is mainly for the study of system characteristics. Visual informations

are easy to obtain and are helpful in resolving conflict and ambiguity.

The proposed system does not have the opportunity to test real
data because of the lack of data. The research in damage assesment is
only in its infancy. No organization or individual has been working on

the collection and classification of the real data. We must understand

that appropriate samples for damage assesment are rather difficult to
obtain. The structure must be equipped with recording devices, subject
to strong earthquake and bear certain degree of damage. Therefore,
the demonstration of the proposed method is based on experimental
data only. It attempts to show the feasibility instead of practicability of
the proposed method.

The segmentation of waveform employs some structural (contex-

tual) information. Peak extraction needs structural information,

merge of small peaks with the nearest large peak also needs structural

information. In our demonstration, only the top level recordings are




used for comparison. Intermediate levels are similar to top level but

with smallar amplitude.

3.7 Conclusion

In this chapter, syntactic pattern recognition has been applied to
the discrimination of earthquake and nuclear explosion based on
seismic waveforms. The waveforms are segmented by a fixed length. A
clustering procedure classifies these segments and a symbol is assigned
to each cluster. Finite-state grammars are inferred from the training
set using k-tail inference algorithm. An error-correcting parser and a
nearest-neighbor rule are compared with respect to their performance
in recognition speed and accuracy. Although the classification results
seem to be encouraging, there is plenty of room for improvement. The
selection of a set of distinguishing features is the most important part
in practical pattern recognition applications. The difficulty increases
when the classes are somewhat overlapped. Most of the features which
are effective in decision-theoretic approach can also be used in the syn-
tactic approach for primitive recognition. The number of features
selected should be kept as small as possible {for the sake of computa-

tional efficiency.

In string distance computation, the assignment of weights for
transformation errors is a difficult subject especially when insertion,
deletion and substitution are all included. The seperation between clus-
ters can be used as the substitution weights between corresponding
primitives as we did in our experiment. The distance irom a cluster

center to the origin can be used as the insertlion and/or deletion weight

PRORY W S W WL PN, UL S0P PR GG AT WKW ") NGRS PP U UL DU I B S I U W W W S Y




FA P
ARG Ky P R A Y

108

of that primitive. Heuristic information may be necessai'y and helpful

~ in most cases.

Syntactic approach can be modified to deal with stochastic models
if the probabilities associated with pattern classes and training samples
can be easily determined. In this case, there will be stochastic gram-
mar, stochastic language and maximum-likelihood parsing (see Fu,
1982). We did not apply the stochastic approach because the class and
string probabilities are unavailable. This must be done from the
analysis of the previous records. If the probabilities can be determined
precisely, which can be made to a certain degree, the class-overlap
problem can be solved. Syntactic approach can be made more flexible
by adding numerical information (attribute) to the primitives.
Meanwhile, it can also make the pattern grammar less complex. We will

discuss an attributed seismic grammar and its parsing in Chapter IV.

At the present stage, our experiments show that the nearest-
neighbor decision rule is faster than the error-correcting parsing.
Although the speed of error-correcting parsing depends on the struc-
ture of the grammar, the nearest-neighbor rule is faster in general.
VLSI architectures have been recently applied to both string matching
and recognition (by parsing), which will be discussed in Chapter V.
Decision between simple, faster classification and sophisticated, slower

syntax analysis should be made according to application requirements.

Syntactic pattern recognition has also been applied to damage
assesment where the seismic recordings are the physical measure-
ments. Strings of various length are constructed from the seismic
waveforms. A modified dynamic time warping is developed for comput-

ing the string distance. The segmentation of waveform in syntactic

WL ML N e T

« " w " . . ™. LI R T . T
¥ P P R PN N W U P i P

M WA Ky



109

pattern recognition usually uses shape information. Tte shape informa-
tion appears to be not important for seismic signal. Besides, it does not
have much discrimination capability. The envelors of the signal
appears to be very good features in some cases, for example, consider-
ing Figure 1.2, but not so in other cases, for example, when Figure 1.3
and 1.4 are compared with Figure 1.2. The application to damage asses-
ment shows that special algorithm for string distance computation
must be developed for some applications when the general string dis-

tances seem unable to solve the problem.




ey

110

CHAPTER IV

INFERENCE AND PARSING OF ATTRIBUTED GRAMMAR
FOR SEISMIC SIGNAL RECOGNITION

4.1 Introduction

Attributed grammars were first formulated by Knuth (1968) where
"meaning” can be assigned to a string in a context-‘ree language by
defining "attributes” of the symbols in a derivation tree for that string.
The attributes are defined by functions associated with each production
in the grammar. Although the idea of attributed grammar is due to
Irons (see Knuth, 1968), Knuth included inherited attributes as well as
synthesized attributes which often leads to significant simplification.
While attributed grammars were originally proposed ‘or programming
languages, they have been applied to pattern recognition recently and
increasingly. Tang and Huang (1979) used attributed grammars for
image understanding. You and Fu (1978, 1979), Tsai and Fu (1980) and
Tai and Fu (1981) have applied attributed grammars Lo shape recogni-
tion and transformation. Shi and Fu (1982) propcsed an efficient
error-correcting parser for attributed tree grammars where semantic
information are associated with each terminal but no semantic rule is
associated with the production. Leung (1982) also proposed an error-
correcting parser for attributed grammars with applications to charac-

ter recognition. Knuth's formal semantics can also be applied to




......

..........
P

PRI AP TR LR G W PRy U DR P IR I PP PP P Y

111

patterns described by picture description language (PDL) expressions
(Fu, 1982).

The advantages of using attributed grammars for pattern recogni-
tion are twofold. The inclusion of semantic information increases the
flexibility in pattern description; in the meantime, it reduces the syn-
tactic complexity of the pattern grammar. We may notice that all the
above applications are essentially tc pictorial shapé recognition where
length and angle are useful semantic informations. This same set of
atiributes can also be used in waveform shape recognition, e.g., ECG
analysis, where shape information is very important in recognition.
However, they can not be applied to the signals, e.g., EEG, seismic and
speech, where shape informations are not particularly important. The
segmentation of these signals usually corresponds to a short, fixed- or
variable-length time period. In order not to overlook any tranmsition,
the time periods are usuall.y kept relatively short. Therefore, it is very
common that the same primitive may last for several periods. This
often makes the pattern strings and the inferred grammars unneces-
sarily complicated. The numbers of productions and nonterminal sym-
bols are usually very large as we can see from the experimental results
in Section 3.5. Instead of keeping track of all these identical primitives,
we can use one synlactic symbol Lo represent the type of the primitive
with an attribute to indicate the length of the primitive. This leads to
the application of length attribute to seismic and other similar digital

signal analysis.

A pattern primitive e can be represented by a 2-tuple

a=(s, z)




P
P W

112

where s is a syntactic symbol denoting the primitive structure of a,
and z = (z,,Z3,...,.Zp ), m = 0, is an m -dimensional semantic vector with
each z;,1 =1, 2, ..., m, denoting a numerical measurecment. A pattern
string can be represented by a,azas...a,, where a; = (s;, ;), {; is ihe
length of primitive a@;, 1<i<k. For a fixed-length segmentation, {; = ¢
for all <, \'where c is a constant. For a variable-length segmentation, {;

may or may not equal to l; when 7 # j. In our case, [; = c for 1<i=<20,

‘where ¢ = 80 points. For simiplicity, with constant length in mind, we

can eliminate the semantic part. For example, a pattern string may

look like

acadgggegggggggegeeg

where these are syntactic symbols. It can be further simplified by

merging identical symbols, therefore the above string becomes
adgegegeg
313171121

where the numbers are numbers of unit lengths; each unit length con-
tains 680 points in our case. This idea shows some storage improvement
in string representation, and it will show significant improveranent in
grammatical inference as we will see in the n'ext section. Although we
used finite-state grammars to describe the seismic patterns in Chapter
III, we will use attributed cfg’s here. This is because attributed fsg's do
not have much reduction in the number of productions and nontermi-
nals. Only attributed cfg's can drastically reduce the production
number, therefore make the recognition more efficient. An error-
correcting parser for attributed context-free grammar is given in Sec-
tion 4.3. Stochastic attributed grammar and parsing will be discussed

in Section 4.4.

) P - PN VM T WL 3 N - P D Y SIS X .U S S LA PP WP YL ¥




113

4.2 Inference of Attributed Grammar
for Seismic Signal Recognition

An attributed context-free grammar is a 4-tuple G = (Vy, Vp, P, S)
where each production rule contains two parts, one is a syntactic rule,
the other is a semantic rule (Knuth, 1968). Each symbol X € (Vy U Vy)
is associated with a finite set of attributes 4(X); and A(X) is partitioned
into two disjoint sets, the synthesized attribute set 4,(X) and the inher-
ited attributed set 4,(X). The syntactic rule has the following form

XkO - Xk 1ng. .. 'Xk"'h

where k means the kth production. The sematic rule maps values of
certain attributes of Xz, Xi), ..., Xin, into the value of some attribute of
Xi;. The evaluation of synthesized attributes is based on the attributes
of the descendents of the nonterminal symbol, therefore it is a
bottom-up fashion in the tree structure. On the conirary, the evalua-
tion of inherited attributed is based on the attributes of the ancestors,

therefore it is a top-down fashion in the tree structure.

In Chapter IIl, we have chosen a set of 41 explosio: seismic records
as training samples. Each record has been converted .nto a string of 20
primitives. If we use the k-tail algorithm to infer a finite-state gram-
mar for the pattern class with a value of £k = 20, the total number of
productions will be 720 and the number of nonterminal symbols will be
681. In order to reduce the size of the grammar we use one length
attribute, i.e., the number of unit lengths. The input strings are attri-
buled strings, and the production rule of the grammer has a syntactic
part as well as a semantic part which contains both synthesized and

inherited attributes. The type of grammar is also upgraded into &

a4 o o




—— A A g
Aiia BB ST

. PR '
RSN A P A VAR

114

context-free grammar, due to the type of S-productions. Tai and Fu
(1982) used the length attribute of the strings in the inference of a
class of context-free programmed grammar (cfpg). However, the
length attribute is only for the construction of the con.rol diagram, i.e.,
a graphical representation of the success and failure go-to fields. The
inferred cfpg is nonattributed, and the parsing was nst discussed. We
use length attribute in both inference and parsing. The inferred gram-
mars are attributed grammars, and the attribute plays an important

role in parsing.

To explain our inference procedure, let us first consider one input
string

ceaedgggegggggggegeeg
where each primitive has a length attribute 1 which means 1 unit
length. First, it will be converted into the following string by merging
identical primitives.

adgegegeg

313171121

Theoretically, the length attribute is continuous. But in digital signal
processing, the waveforms represenesented by a finite number of sam-
pled points, therefore, the length is always discrete in practical cases.
In our case, the length attribute is the number of unit lengths. It is
discrete and is a positive integer. Then we can infer the following attri-

buted grammar

Syntactic rules Semantic rules

(1) S-ADGEGEGEG L(A1)=3,L(D)=1,L(G1)=3,
L(E1)=1,L(G2)=7,L(E2)=1,

TSR S PP PSRRI S — PRI S RN SR O W PRy WO W WAL WL TN WY S Sy

P e




.
PR TN

115

L(G3)=1,L(E3)=2,L(G4)=1

() A-ao4d L(A1)=l(a)+L(AR)
(3) A-a 1(A)=l(a)
(4) D-dD L(D1)=L(d)+L(D2)
(5) D-d L(D)=L(d)
(6) E-eE L(E1)=L(e)+L(E2)
(7) E-e L(E)=L(e)
(8) G-gG CU(G)=L(g)+L(G2)
(9) Go-g L(G)=L(g)

where L denotes inherited length attribute, | denotes synthesized

length attribute and the number right after the nonterminal symbol is

used to distinguish between occurrences of like nonterminals.

It is

noted that the inherited attributed L does not pass down to the descen-

dents as it usually does; rather it is used to maintain the semantic

information of the training string and as a reference for comparison in

parsing. I'or simplicity we let l(e) = 1 for all @ € V;;. When we have

another input string
aacdehtihffffffhmffrf

we convert it into
acdehthfhm/f
21111116114

and add to the grammar the following productions

kel AT S el S -SuRL S




—— T —— < N i P Sl A i e A i) e Yy s

- 116

Syntactic rules Semantic rules

S+ ACDEHIHFHMF L{(A)=2,L(C)=1,L(D)=1,
L(E)=1,L(H1)=1,L(I)=1,
L(H2)=1,L(F1)=6,L(H3)=1,
L(M)=1,L(F2)=4

C-cC L(C)=L(c)+L(CR)
C-c L(C)=L(c)

H-hH L(H1)=L(h)+L(HR2)
H-h L(H)=l(h)

I-4] L(IN)=L(R)+1(I2)
I3 L(I=L(1)

FofF L(F1)=L(f)+L(FR)
F-f LF)=L(f)

We may notice that after reading a few input strings there will be no
need to add those C-+cC, C~»c productions. We only need to add one
produciion for each input string, i.e., the first production in the above
example. In fact, there are 2m +n productions for a set of n training
strings, where m is the number of nonterminal symbols. We now for-
mulate the inference algorithm of attributed grammars which use

length attribute.

Algorithm 4.1 Inference of Attributed Seismic Grammar
Using A Length Attribute
Input: A set of training strings where each string'has a
syntactic symbol and a length attribute.
Output. An Attributed Grammar.
Method.




3
..........
.............

Y W

T ———
.....................

117

(1) For each input string, merge identical primitives; the length is
the summation of the individual lengths.

(2) For each input string a;asag...a;, add to the grammar the pro-
duction S-+A4;4243...4;, where 4; is the nonterminal corresponding to
terminal a;; and the semantic rule L(4;) = [;, 1sisk, where [l; is the

length attribute of primitive a;.

(3) For each primitive a, add to the grammar the production
A-ad, l(4;) =l(a) + L(Ay) and A»a, {(A) = l(a), if they are not already
existed.

(4) The set of terminals includes all the different primitives; the set
of nonterminal includes all the nonterminal symbols in Step (2).

A flow chart of this inference algorithm is given in Figure 4.1. This
inferred grammar will generate excessive strings if we apply syntactic
rules only. However, we can use semantic rules (inherited attributes)

to restrict the grammar so that no excessive strings ar= generated.

The inferred grammar from the 41 training strings is shown in the

following.

Syntactic rules Semantic rules
(1) S-ACAGHFIJMJFMKMJM (1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1)
(2 S-MKLGIFDIFHFMKILIB (1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,2)
(38) S-LEIFJLFBFHDJFKJL (3.2,1,1,1,1,1,1,1,1,1,2,1,1,1,1)
(4) S-LJLEFKJHFJMJMIFJ (1,1,1,1,1,2,1,1,3,1,i,1,1,1,1,2)
(5) S-LJLGFHFHFHIFMJFLFM (1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1)
(8) S-»ACDEHIHFHMF (2,1,1,1,1,1,1,6,1,1,4)
(7) S->ALGIMLMKJMLMJLJL (1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,1)

(8) S-LMLGEMKJKMKJKMJM (1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,2)




i 118

3 IS
a
P I 4

B

START

A

convert nonattributed
input strings into
attributed strings

v
~
ro,
)
A
r
L
M
L
it
r 0
.
‘v

infer production rules
from the input strings

infer production rules
from the primitives

y

construct the sets of
nonterminal and
terminal symbols

J
( STOP )

Figure 4.1 A flow chart of the inference algorithm (Algorithm 4.1).




(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(28)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)

S+>CKDIFKIMKMJMJM
S->DLDHJMLMJFLMKL

S +CACEIFKMKJMKM
S-+>LMGFKFIFMJM

S+ ABCGIMKMKEBKJM
S+CEHIJFMFKJMFMFJ
S *KMKEFﬂFIJKMJKJKM
S LJEHDFLIMFJLJFJ
S+>JMGFHMFHFMHLJIM
S-+BJEFKMKMKMKMKMK
S-+BCBGHEFHFJF

S > IKEIHIFIHFIHFLF
S-+DFHFDFLIF
S+ACEHFJMKFJMKM
S-»JLGHDHLMJL
S->KMBEHFMKBKM
S+KBKGHMFMFKHMJ
S->LMIEIHFHJIKMLKLK
S->ADGEGEGEG
S+>MACGHFJMFJMJIM
S-+>JMGEFKJMKJKMJ
S~»LDGEDHDLDLDLD
S-IHFEIEHIHIFIFIDI
S-»>HIEIFIFHDHDEBFHF
S -; GDEGEIEGIGEDGDE
S+KBHDGHDHGDGDGHD
S+ACAGEFIFKFMFMJM

(1,2,1,1,4,1,1,1,1,1,2,2,1,1)
(2,1,1,2,1,3,1,1,1,1,1,1,2,2)
(1,1,1,1,1,1,1,1,3,2,5,1,1)
(2,1,1,1,1,1,2,3,3,4,1)
(1,1,1,1,1,4,1,2,2,2,1,1,2)
(3,1,1,1,1,1,2,2,1,1,2,1,1,1,1)
(1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,2)
(2,1,2,1,1,1,2,2,1,1,1,1,1,2,1)
(1,2,2,2,1,1,1,2,1,2,1,1,1,1,1)
(2,1,2,1,1,1,2,1,1,5,1,1,1,1,1)
(1,1,1,2,3,1,1,7,1,1,1)
(1,2,1,1,1,1,2,1,1,4,1,1,1,1,1)
(6,2,1,1,1,2,3,2,2)
(1,2,1,2,3,1,3,1,1,1,2,1,1)
(1,2,1,1,1,1,7,1,4,1)
(1,1,1,2,1,1,1,4,2,5,1)
(1,1,1,1,1,1,2,2,2,1,1,5,1)
(1,2,1,1,1,1,1,1,1,1,1,1,3,1,2,1)
(3,1,3.1,7.1,1,2,1)
(1,1,1,1,1,1,1,3,1,1,2,2,4)
(2,1,1,1,1,2,2,5,1,1,1,1,1)
(1,2,1,1,1,1,2,1,1,1,1,2,5)
(1,1,1,2,1,1,1,1,1,2,1,2,1,2,1,1)
(1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1)
(1,1,1,1,2,1,5,1,1,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1,4,1.1,2,1,1,1)
(1,1,1,1,1,3,1,2,1,1,3,1,1,1,1)

T i U




(38)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)

120

S+ LJLGIFLFMJFLFMJMJF (1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1)

S-+DFDHDHDLDF (4,1,2,1,2,4,1,1,3,1)
S-HJLFEFGEGFIFEH (1,1,1,1,1,1,1,5,2,1,1,1,2,1)
S*FJILFHGEIEHECD (1,1,1,1,2,1,2,2,1,1,2,1,2,2)
S-+BIHEGDGHGHG (3,1,3,2,3,1,1,2,1,1,2)
S-+CKCFHDGHGLHDH (1,1,1,2,1,1,1,1,6,1,2,1,1)
A-ad L(AD)=l(a)+l(42)

A-a L(4)=L(a)

B-bB L(B1)=L(6)+L(B?)

B-b L(B)=L(b)

C-»cC L(CV=L(c)+l(C2)

C-c ' L(C)=l{(c)

D-dD L(D1)=l(ad)+l(D2)

D-d L(D)=L(d)

E-eE L(EV)=l(e)+l(ER)

E-e L(E)=l(e)

FofF LF1)=L(f)+I(FR?)

Fof LF)=L(f)

G-»gG L(G1)=l(g)+L(G2)

G-g L(G)=l(g)

H-hH L(H1)=L(h)+L(HZ)
H-h L(H)=L(h)

[»il L) =L (E)+L(I2)

I+i L()=L()

J 5] L(J 1) =L () +L(J2)

J~j LJ)=L()

K-kK LIK1)=L(k)+l(K2)




s

ren it AN e t 42

Bl et S
. Ve L.
o Lo

- ot L tetat e

LA B e 4.2 50 ]
Oy

PE I
CAPRLL

LT .
. . N

121
(63) K-k L(K)=l(k)
(64) L-liL L(L1)=L(L)+I(L2)
(65) L=l L(L)=t(l)
(66) M-mM LMD=l(m)+L(M2)
(67) M-m L(M)=l(m)

where (1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1) is a shorthand for the inherited
attributes whose meaning should be clearly understood from the previ-

ous examples.

This attributed grammar has 67 productions, a more than 90%
reduction from the nonattributed grammar which requires 720 produc-
tions for 91% correct recognition. There are only 13 nonterminal sym-
bols in this attributed grammar, which is equal to the number of termi-
nal symbols. The nonattributed grammar has 681 nonterminals. The
number. of nonterminal symbols will not increase in this at.t.ribﬁt.ed
grammar and the number of productions will increasz at most by one
for each additional input string. We can also expand the inherited attri-
bute into a set of numbers. For example, we may let L(4) = {2, 3, 4§,
which means the length of nonterminal symbol 4 can be 2, 3 or 4. This

will greatly increase the flexibility in some applications.

4.3 Error-Correctihg Parsing of
Attributed Seismic Grammar

A modified Earley’'s parsing algorithm is used for our attributed
context-free seismic grammars. We assume that subslitution, insertion
and deletion of terminal symbols are allowed, but no substitution,

insertion or deletion of nonterminal symbol is permi.ted. This means

ot al . -loa A & ales s o m’ s aloa . a -.'.'.~J




the length of the local segment is variable, even local noise is tolerable,
but the whole local segment can not be deleted entirely. The local seg-
ment means a segment of identical terminal symbols. The item of this
parsing algorithm has the form [A-a - B, 0, ¢, i] where 7 is a counter
for local syntactic deformation which accumulates the total cost of sub-
stitution of terminal symbols. ¢ is used for two different purposes.
When 4 # S, ¢ is used as synthesized attribute of A. On the other hand,
if A = 5 then ¢ is used as a counter for semantic dzformation which
records the total length variation of nonterminal symbols, and % is the
same pointer as a conventional Earley's parser. A parsing algorithm for
expanded attributed grammar using length attribule has been pro-
posed by Leung (1982). As usual, we don't need an expanded grammar.
All the deformations are examined during the parsing while errors are
recorded in appropriate counters. The parsing algorithm is shown in

the following.

Algorithm 4.2 Minimum-Distance Error-Correcting Parsing Algorithm

for Attributed Context-Free Seismic Granmar.

nput: An attributed seismic grammar G = (Vy,Vy,P,S) and an
input string ¥ = b,b5...b,, in Vy.
Output: The parse lists /o, I4,....l;n,, and decision whether y is

accepted by the grammar G together with the syntacic and semantic

deformation distances.
Method.:
(1) Setj =0.Add [S~» -, 0,0, 0] to J; if S-a is a production in P.

(%) Repeat step (3) and (4) until no new items can be added to J;.

. e oLt .. . . . . “ - .
P IR TR W PGS Ui W Yol Wil G LI T O WP WO R G e e § " L LN -




123

(3) If [A»a - BB, m, &i] is in [;,and B -7 is a production in P, then
add item [B~» - 7,0, 0, j] to J;.

(4) (a) If [A»a -, ma &2i] is in I; and [A-a - A, my, £1,k] is in L,
then add an item [A-ad -, n,47n,, &+£2,k] to J;. (There is no need to
check collision here, since there will be no other item of the form
[4-ad4 -, 7n, &k]in I;.)

(b) If [A»a -, 7y &21] in J; and [S-8 - Ay, 7y, &,k] is in I, then
add an item [S-B4 - 7, n1+nz, &1+(L(4)—¢2).k] to I;, where L(4) is the
inherited attributed of the nonterminal symbo_l A. '

(8) lf j=m, go to step (7); otherwise j=j+1.

(8) For each item [4- - aB, n, £i] in [;-; add [4=a - B, n+S(a,b;),
$+L(bj), i] to I;, where l(b,-) is the synthesized attribute of ;. For sim-
plicity, we may let L(b;) = 1 for all j. S(a,b;) is substitution cost, and
S(a.b;) = 0when a = b;. Go to (2).

(7) I item [S>a-,n, & 0] is in I,,, then string y is accepted by
grammar G where 7 is the syntactic deformation distance and £ is the
semantic deformation distance; otherwise, string v is not accepted by

grammar G. Exit.

A flow chart of this parsing algorithm is given in Figure 4.2. 1t is
noted that (1) The parsé extraction is straightiorward once the first S-
production is identified, therefore we do not include the parse extrac-
tion algorithm. This is obvious. Since we use attribules, the syntactic
part will be much simpler than that of a nonattributed (context-free)
grammar. (2) Deformation of any type on terminal symbols will be
accepted. For a simple example, the string‘ 'aaadgggegggggaggegeeq’

will be accepled by our seismic grammar with no error; the string




o I A A .r‘~v,¥

DOINONOG PR

| g 4

2

.—vf
T, 4
AP BTy ¥

124

START

j=0. Add [S — a,0,0.0]
to;ifS ~aisa
production in P

!

If[A—=ao-B3nti]isin L,
and B — 4 is a production
in P then add [B — - 4,0,0,j]
to l,

:

If [A = a *92.6,i] is in I, and

[A — a:An.6 k] isin I,

then add A — aA~ g+ 9.6, +x5.K]
to I .

:

I JA = a*n2,62,0] is in ]; and

[S — BAvn,,6.X] is in I,

then add [S — BA“v.n;+n2.6, +(L(A)-E) k]
to l‘

Yes

items added
tol;?

If [S —m€0] is in I,
then string y is accepted by
G, n is syntactic and ¢ is
semantic deformation distances

j=jtl

( sToP )

For each [A = -aB.€]

inl_, and
IA — a"ir’""&(ﬂ,b,),f"’l(b,).ll
to J;

Figure 4.2 A flow chart of Lthe parsing algorithm (Algorithm 4.2).

PRI S A =, . s B A L. I, MUY W Yy S L " SO W Y i P . R S S -




...............

125

'‘aadgggeg...' will be accepted with semantic error of cne unit length on
'4'; and the string ‘ebadgggeg...’ will also be accepted with a syntactic

substitution error S(a,b).

The time complexity of Algorithm 4.2 is O(n®) where n is the length
of the input string, since each item list I; takes time 2(j) to complete.
However, since we only considered substitution error in the seismic
recognition problem in Section 3.5, a simplified version of Algorithm
4.2, i.e., Algorithm 4.4, can be applied. This special parser is faster
than Algorithm 3.2. The experimental results are given in Section 4.5.
The question about how much advantage we can take by using attri-
butes depends on the selection and characters of the training samples.
If the training samples are very much alike, then there are great possi-
bilities that less syntactic rules are needed; instead, attributes will be
used to distinguish between different patterns. An attributed grammar
can also be constructed manually based on the knowledge about pat-

tern sources. This may sometimes be a great advantage.

4.4 Stochastic Attributed Grammar
and Parsing for Seismic Analysis

Although we do not know the probability distribution of the training
samples at this moment, it is possible to estimate it if more samples
are available. If the probability distribution of the training samples is
known, then we can infer the production probability using the algo-
rithm described in Lee and Fu (1972b). Therefore, we also include a
parsing algorithm for stochastic atiributed seismic grammar in this

section. A stochastic version of the attributed grammar shown in

S T T . - N oot
[ TR e Sk b e o L v K ——— iy — LA I RS T PNy R VT Y re -




¢ vy
3

v AL o
'..’ W g PR A
« & 8 0 a YitL. 4T e

It (Sl ¥
:
.

126

Section 4.2 can be formulated as follows. First, a probability is associ-
ated with each production. Second, a probability distribution is associ-
ated with all the possible attributes. For example, if originally L(4) =
{3, 4, 5§, now it may become L(4) = {(8, 0.25), (4, 0.5), (5, 0.25){, where
0.25 = Prob{L(A4)=3}. Finally, probabilities instead of costs are used to
characterize substitution transformations. The probability associated
with each S-production will be the probability of occurrence of the
training string which contributes to that production.

The parsing algorithm of stochastic attributed seismic grammar is
very similar to Algorithm 4.2 except for the following changes. Firsi, n
is now the probability of syntactic substitution deformation. Second, &

is still used as a synthesized attribute of 4 when 4 # .S, however, when

A = 5, & will be the probability of semantic deformatioas.

Algorithm 4.3 Error-Correcting Parsing Algorithm for

Stochastic Attributed Seismic Grammar

Input: An attributed seismic grammar G = (Vy.Vp,P,S) and an

input string y = b,b2...by, in Vp.

Output: The parse lists 14, 14,..../,, and decision whether y is
accepted by the grammar G together with the syntazic and semantic

deformation probabilities.
Method.
(1)Setj =0.Add [S~ + a, 1, 1, 0] to J; if S+a is a production in P.
(2) Repeat step (3) and (4) until no new items can be added to J;.

(3) If [A»a - BB. 7m, ¢,4] is in [;,and B -7 is a produclion in P, then
add item [B~» - 7,1, 1,j] to J;.




han s S oY M N REND
AN I+ NENENERENENENE |

127

(4) (a) If [A»a - ,7mp &24] is in I; and [4-a - 4,7y, &,k] is in I,
then add an item [4-ad -, 7, - ng, &+€2.k] Lo I;. (There is no need to
check collision here, since there will be no other i.em of the form

(A-24 -, 7m, £k]in J;.)

(b) If [A»a -, 7z &i) in I; and [S-B - A7, My, & k] is in I, then
add an item [S-+B8A - 7, M * M2 & Probiéslk] to I;, where L(4) is the
inherited attributed of the nonterminal symbol 4.

(8) If j=m, go to step (7); otherwise j=j+1.

(6) For each item [A-: @B, 7, &i] in I;_, add [4-a -8B,
n - Pslb;la), ¢+1(b;), i) to I;, where I(b;) is the synthesized attribute
of b;. For simplicity, we may let L(b;) = 1 for all j. Ps(b;|a) is substi-
tution probability. Go to (2).

(7) If item [S-a-,mn, ¢ 0] is in /,,, then string iy is accepted by
grammar G where 7 is the syntactic deformation probability and ¢ is
the semantic deformation probability; otherwise, string ¥ is not

accepted by grammar G. Exit.

A flow chart of this parsing algorithm is given in Figure 4.3. Due to
the error-correcting characteristics there may be more than one item
of the form [S-a -, 7, ¢ 0] in J,,. In that case, a decision should be
made based on i and ¢ Weights can be assigned to 77 and & Neverthe-
less, this is a rather subjective judgement, and is always a problem

when using both syntactic and semantic informations.

S e, e e et - NPT W LS. P




RELNEG. & CORPIORY

L

g

)
S e L e

R—
A

LREIND el

LR A o s SR e o g
[l 5 +ONEASMERTREN

L{' L.

e e,
—my B

START

j=0. Add [S — ¢a,1,1,0]
tojifS—aisa
production in P

T

If |[A = a'BBn.£i} is in J;
and B — 1 is a production in P
then add [B — +y,1,1,j to |

T

If [A — a*,2,€5.] is in [, and
[A — a:A9,,€,k] is in [, then add
(A — aA* g na§y +6K] to |

T

If [A—’ 0‘,1]2.62,“ is in lj and
IS — 8:A7,9,,6,.k] is in L, then add
[s - BA°71"I"'2»€!' Pmb{fz}»l\] to lj

ew

Yes ~fiems added

to li?

If S — a'n,60]isin 1,

deformation distances

then string y is accepted by G, Yes
n is syntactic and ¢ is semantic

( sToP )

Figure 4.3 A flow chart of the parsing algorithm (Algorithm 4.3).

j=j7+l

For each [A — -afn.&i] in [, add
[A - ﬂ'ﬂ-'l'P.(bjl 3)'5""“),,"]
to I,




129

4.5 Experimental Results and Discussion

In this chapter we have shown an attributed seismic grammar
which has only 87 productions and 13 nonterminal symbols compared
to the 720 productions and 681 nonterminal symbols of a nonattributed
finite-state grammar. An error-correcting parser (Algoritm.4.2) is also
proposed for this attributed grammar. Since the error-correcting
parser of Algorithm 3.2 considered only the subslitution error, a
simplified version of Algorithm 4.2 which ignores the length variation
can be used to greatly increase the processing speed. This is shown in

Algorithm 4.4.

Algorithm 4.4 Top-Down No-Backtrack Error-Correcting Parsing

Algorithm for Attributed Seismic Grammar.

Input: An attributed seismic grammar G = (Vy,Vy,P,S) and an

input string ¥y = b;b5,...b,, in V7.

Output. The minimum distance between y and L(G) where only sub-

stitution error is considered.

Method.

(1) Set N = the number of S-productions, min-distance = a

sufficiently large number.
(R) Set 1 = 1.
(3) The ith S-production has the form S; -+ 4;;4;2 - - - 4u,. where

M; is the number of nonterminals at the right-hand side of the ith S-

production, 4;; € Vy, 1 = j < M;.

(4)Setdist =0,k =1, = 1.

...... N e . o - .
LR e, R SR S L S TS, S T W N A W L U A o




PR
-

@

L a4

-------------

e T Ty T W T L

130

BXa)If k > ‘é L(A4y), thenl=l+1.
p=1

(b) Apply production 4; - azd; and compute dist = dist +
S(ay.by). k=k+1. Note that there is one-to-one correspondence

between 4; and a;, a; € Vp.
- (8) If k=m., go to step (5).

(7) If dist < min-distanct then min-distance = dist.

(8) i=1i+1.If i<N go to (3); otherwise min-distance is the minimum
distance between ¥y and L(&). Exit.

A flow chart of this parsing algorithm is given in Figure 4.4. A parse
of ¥ can be constructed by tracing the productions used in Step (3) and
(5)(b). If the length variation is to be considered then the item lists will
contain a large number of items, and consequently the computation will
be slow. However, Algorithm 3.2 is unable to even coasider the length

variation.

The recognition results and computation time for recognizing one
string are given in Table 4.1. While both attributed cig and nonattri-
buted fsg show 91% correct recognition, the average computation time
for one string is 0.11 second using attributed seismic grammar and is
2.55 second using nonattributed finite-state grammar. This is because
the finite-state seismic grammar has a large number of production
rules and nonterminal symbols. A large table must be maintained and
searching is very time-consuming. Although a special-purpose
hardware can be built to speedup the computation, il is slow for a
sequential computer. Algorithm 4.2 is also time-consuming for a gen-
eral context-free grammar. However, the scismic grammar in Section

4.2 is a very special cfg, and the application ol the prodauction rules is

BT P U RPN, Py Jt S i tan ml et aa s adad ol et o ol ol d ek

PR UV S W




...........................

131

!ﬂ START

oo Initialize N,
min-distance;
: i=]

Fetch ith production
Si—Aj Az Aimi

4
dist. = 0
k=1, 1=1

I=1+1

Apply Ay—ayA
dist.=dist. +S(ln.bk)
k=k+1

dist. <
min-distant
9

Yes

:nin-distant =dist|

]

i=i+1

: Yes

sTOP

T

Figure 4.4 A flow chart of the parsing algorithm (Algorithm 4.4).

4

Qi) .T{W' st LG
. P R A,
Ve, PR

- R -
........




132

TABLE 4.1

The recognition results, computation time,

and memory used for seismic recognition using
an attributed context-free grammar and a
nonattributed finite-state grammar.

(Time is for one string)

Accurate Average memory
Rate Time used
~ (sec) (bvtes)
Attributed 91% 0.11 41360
cig
Non-
attributed 917% 2.55 72804
fsg

e e AL R e EEEEEE e i e i el ey s A e e S




.....

......

133

very straightforward. The actual storage used in computer is also given

in Table 4.1.

We mentioned earlier that substitution, insertion and deletion of
terminal symbols are allowed but no substitution, insertion or deletion
of nonterminal symbol is permitted. As a matter of fact, substitution of
nonterminal symbols can be attained in terms of substitution of termi-
nal symbols. Therefore, only insertion or deletion of nonterminal sym-
bols is not allowed. The reason is that if the training samples are well
selected, the grammar should be able to recognize any reasonable
strings. If the test string needs insertion or deletion of nonterminal
symbols in order to be accepted, it is either severely cistorted or miss-
ing some string segments. If insertion and deletion of nonterminal
symbols are to be considered .then this becomes a structural-
deformation problem (Tsai and Fu, 1979). We can &dd insertion and
deletion error transformations in Step(6) of Algoritm 4.2 as we did in
Algorithm 2.4. This will make the algorithm more complicated. A dis-
tance threshold should be imposed to eliminate unrealistic parses so

that the item list will not become unmanagable.




134

CHAPTER V

VLSI ARCHITECTURES FOR SYNTACTIC
SEISMIC PATTERN RECOGNITION

5.1 Introduction

Some computational algorithms, for example, matrix multiplication
and inversion in numeric computation and string matching in non-
numeric computation, are very time-consuming so that an efficient
implementation is usually not feasible and economical. However, this
situation has been changed due to the advances in hardware technol-
ogy, i.e., the development of high-speed, high-density and low-cost elec-
tronic devices. Hardware implementation (particularly parallel and/or
pipeline processing) of software algorithm has becorne an affordable
solution to increase the processing speed because the cost of hardware
is decreasing. Advance in VLSI technology makes it possible to pack
more components into one chip at a lower price than ever before (Mead
and Conway, 1980). This revolutionary impact stimulates considerable
interest to develop parallel algorithms for VLS] implementation and
build special-purpose chips for specific applications (Kung, 1979, 1980).
A whole book (Bowen and Brown, 1982) has been devoted to VLSI sys-
tems design for digital signal processing. Many computers and proces-

sors have been developed for signal processing. The recent trend is to




135

use attached signal processors, e.g., Lincoln Laboratory Fast Digital
Processor (FDP) and Data Genaral AP/130 array processor, instead of
supercomputers as ILLIAC-IV and Advanced Scientific Processor (ASC)
(Bowen and Brown, 1982). More specialized applicati;ms for matrix mul-
tiplication, convolution and solving linear equations can be found in
Kung (1979, 1982), Kulkarni and Yen (1982), Hwang and Cheng (1981). A
recent example of special-purpose VLSI architecture is an integrated
multiprocessing array for time warping pattern matching which is used
in speech recognition (Ackland, Weste and Burr, 1981). Pattern match-
ing is the most time-consuming stage in speech recognition especially
when the dictionary is large. Using parallel processing improves the

speed 200 times faster, therefore make the real-time application possi-
ble.

Like dynamic time warping, all the string distance computation and
string matching are time consuming. Hardware implementation has
been proposed by Okuda, Tanaka and Kasai (1976) for computing
Levenshtein distance even before VLSI technology is available. They
used delay circuits to implement insertion, deletion and substitution

weights.

We propose in this chapter a VLSI architecture for seismic
classification using syntactic approach, which includes feature extrac-
tion, primitive recognition and string matching. Our string matching
implementation is more complicated than Okuda, et al's, where
different weights are assigned to different symbols in our case. This
special-purpose processor is designed to be attachec to a host com-
puter, for example, a minicomputer as shown in Figure 5.1, therefore it

works like a perihperal processor. Three syslolic arrays are proposed




.

5 136
SYSTEM BUS
ZAIN SPECIAL 1/0
NV.EKORY CPU PURPOSE DISC TAPE DEVICE
PROCESSOR

Figure 5.1 The special-purpose processor is attached to a host computer
as a peripheral processor.

. N .t - R e e B PP DU A - S
. N e Tt - L e et A B B b o e Soiniiom
e PR PO S P Sn




.....

.'-“ J‘].'.'.'-'-
AR S
E
o

137

-

Gt i & A .
R RN
Vo e R

to perform feature extraction, primitive recognition and string match-
ing respectively. Several memory units are required for holding the
intermediate results and for data setup. Figure 5.2 shows the architec-
ture of our special-purpose processor. All these three systolic arrays
perform in time O(1), i.e., results can be produced al a constant rate
provided that input data are supplied properly in a pipelined fashion.
The formations of input data are given in Figure 5.3 where (a) is for
feature extraction, (b) is for primitive recognition anc (c) is for string
matching. Section 5.2 discusses VLSI architectures for feature extrac-
tion. Section 5.3 discusses VLSI architectures for primitive recognition.
Section 5.4 discusses VLSI architectures for string matching. Section
5.5 shows some simulation results and performance verification. Sec-

tion 5.6 gives the concluding remarks.

5.2 VLS] Architectures for Feature Extraction

The systolic array for feature extraction is linearly connected as
shown in Figure 5.4. The input data, which are the digitized and quan-
tized signal waveform coded in binary form, are stored in seperate
memeory modules in a skewed format as shown in Figure 5.3(a) and
Figure 5.4(a). Each memory module is delay by on2 unit time, ie.,
time required to process one data element, from left to right. Each
memory module contains a sequence of words, i.e., discrete signal
points and is connected to a processing element (PE) of the systolic
array. The data are iransferred into the PE's bit by bit, and all the
memory modules are read parallelly. Two features, zero-crossing count

and sum of absolute magnitudes are computed. Absolule sum instead




T

al

T
.

- e R T——— g A MR R TR RTINS T R T TR RTNE

138
BUFFER
CONTROL
UNIT
RAU
IPROCESSOF RAH I RAM D[PROCESSO
JARRAY ARRAY
PROCESSO Rl R
ARRAY
——> Parallel
RAN
e Serial

Figure 5.2 The internal architecture of the special- purpose processor.

. - -




3 4
- 2
[ 4 3 ) 1
Xy X9 X3 X4
' 3 2 1 1
b Xy X9 X3
- 2 1
l. X X9
:- xll
-
= (a)
»
F‘.‘;
4 4 3
X4 xl x4
3
x3 X3
. 4 3 3
X9 X4 X9
3 2
Xy x3 X X4
)
X3 x3 X3
)
x} x3 X3
2 1 2 1
X9 X4 X X4
x{ X3 X3
1 1
] X2 x2
1 1
Xj X
(b) ()

Figure 5.3 Data setup for (a) feature extraction, (b) primitive recogni-
tion and (c) string matching.




140

i
4

—— =t eyl 1 ;
> -

1A

(a)
a
b 1 y « S+ |a|
S ——1 p——e——. X
e e—
c —= /=3 'd « C + (sgn(a) ® sgn(b))
X+« a
(b)

Figure 5.4 Processor array, data movement and operations of each pro-
cessor {or feature extraction.

— i oD S ad]




141

of log energy is used here for the simplicity of implementation. Loga-
rithmic function can be approximated by taking a series expansion (see
Ackland, et al.,, 1981). Zero-crossing is detected by checkihg the signs
of every two consecutive points. Any sign change is counted as one
zero-crossing. An exclusive-OR circuit is used for detection of sign
change. Figure 5.4(b) shows the operation of each PE. The internal
structures are given in Figure 5.5. All the n PE's compute the two
fealures simultaneously and pass the partial results Lo the next PE's.
Each general-purpose register A, B, C, E and S is 16-bit long. The

micro-operations of each PE are as follows.

(1) (a) Transfer (serially) input data into Register A from external

storage.

(b) Transfer (serially) input data into Register B from Register A of
the left PE.

(c) Transfer (serially) partial result into Register C from Register C
of the left PE.

(d) Transfer (serially) partial result into Register & from Register S
of the left PE.
(e) C « C + (sgn(A) + sgn (B)).
() E « |A].
(3) S« S+E.
Steps (1)(a) to (1)(e) can be executed in paralle], therefore can be
completed in 16 machine cycles. Step (2) and step (3) can each be
completed in one machine cycle. The entire operations (1), (2) and (3)

take 18 machine cycles to complete. The time for each processor to

complete its entire operations, i.e. 18 machine cycles here, is call a unit




- 142

L A > X
l .
>
b > B @ E
§ ¢
C - C > d
i i
p.
F ¢
S > S >y
L

Figure 5.5 The internal structure of the processor for feature extrac-
tion.

PP R S S Y




- OB
S

AP OMIARONIE 1 ¢

143

time. Although memory cycle is slower than machine (procesor) cycle,
each memory fetch can take time as long as 18 machine cycles. There-
fore data input can keep up with processor speed. Suppose that input
data are fed in properly, then after m unit times, where n is the
number of data points in one segment, the feature of the first segment
will emerge from the end of the systolic array. There will be a set of
features (of one segment) coming out every unit time thereafter.
Therefore with the systolic array reaching steady state, each segment
only takes 1 unit times, i.e., 18 machine cycles, to complete the compu-
tation. With a uniprocessor, each segment will take O(n) computations
and comparisons. The speedup is n, which is equal to the number of

processors.

5.3 VLSI Architectures for Primitive Recognition

In the primitive recognition problem, we compute the distance
between the unknown feature vector and the reference vector, for
example, mean vector, of each cluster (primitive), and then assign the
unknown feature vector to Lthe cluster of the minimum distance. This
procedure can be divided into two steps; first, compute the distances
between the unknown vector and the reference vectors, and then select
the smallest distance. We use a processor array, which contains 'com-
pute’ processors, for distance computation and a processor array,
which contains Suppose there are ! primitives; each »rimitive 1 has a
reference feature vector {m?%, m%, ..., m}] where k is the total number
of features. A processor array of |l by & which perfo~ms the distance

computation is shown in Figure 5.6. The reference vectors of the

- s —— - A ek s _m .8 2. 4 & A & = .amm . s =

-l v Qi ot avel e T T T T W W r- - T Y W W W w Tws v e Y w e % — 3 W




tion.

Figure 5.8

J—F-------1

J

PR I ety

—_—

.....

k

144
23
=f =2
zé/ 2]
Gy et el el il i
| K l‘ _ o
..I.J petnd e eco : i m— ey ey
| vt N I
) 1 | I . o o
KRB RE] \n
' : : ' ' : l - -..
P L T
| I |
| . I it I &
L ! * [ | e —
- J Ry Y o |

Primitive symbol
]

bmf]

2 U T Y

DAl o b

.....mk’]

Processor arrays and data movement for primitive recogni-




145

primitives enter from the bottom and move up while the unknown
feature vectors enter from the top and move down. The partial sums
move from left to right. The data must be properly skewed as shown in
Figure 5.6 and Figure 5.3(b). Since the two data streams move in oppo-
site direction, they must be separated by one unit time which is shown
by one space in Figure 5.6; otherwise, some data will just pass instead

of meeting each other.

The unknown feature vectors are assumed to come in continuously.
The reference vectors must also repeat their cycles continuously, i.e.,
with the first primitive vector coming right after the lth primitive vec-
tor. After initiation, the feature vectors will be delayed for {—1 unit
times so that t;he first feature vector and the first primitive vector will
meet at the first row of the processor array. The sum, which is equal to
zero initially, will be the distance at the end of computation. The func-
tional diagram of each 'compute’ processor is shown in Figure 5.7(a),
where z is a component of the unknown fealure vector, u is a com-
ponent of the primitive vector and a is the partial sum. For simplicity,
we use the absolute-value distance here. Euclidean distance computa-
tion will take more space and time.

The internal structure and data movementi are shown in Figure
5.8(a). Each 'compute’ processor contains an arithmetic and logic unit
(ALU), and four 16-bit registers A, B, U and X. The micro-operations are

shown as follows.

(1) (a) Transfer data (serially) into register X from the above PE.

1

e iim H s A - N AT RPN TP ST N P P P P WP I S PP I P e —_—al et et et d




146

(b) Transfer data (serially) into register U from the lower PE.

(c) Transfer partial sum (serially) into register A from the left PE.

(8) B«X-U.
(3) B « |B|.
(4) A« A+B.

Step (1) takes 16 clock cycles to transfer one word of 18 bits; step (2),
(3) and (4) takes 1 clock cycle each. The entire operations take 19

clock cycles. The unit time here is 19 clock cycles.

After computation of the corresponding components between the
reference vector and the unknown feature vector, the partial sum
moves to the right. When the partial sum passes the kth processor of
the first row, the output will be the distance between vectors [z{, z],
ozl and [m}, m3, ..., m], then it enters the rightmost column of
processors, which are the ’'compare’' processors. Since the data
streams are seperated by one unit time, the processors on alternate
diagonals (from lower left to upper right) are idle. When vector [z},
z}, ..., ] enters the second row of the processor array, it will meet
vector [m?, mZ, ..., mf). When vector [z}, z}, ..., 2| enters the third
row, it will meet vector [m 3, m$, ..., m3]; meanwhile, vector [z, =5,
oory 2] will meet vector [m?, m2, ..., m?] at row one. We can see from
the above and Figure 5.6 that vector [z}, z3, ..., '] is compared with
the reference vectors in the sequence 1, 2, ..., L, vector [z?, 2, ..., 2]
is compared with the reference vectors in the sequeace 2, 3, ..., {, 1,
and so forth. These operations are overlapped, i.e., pipelined, in a way
that every processor is doing part of the computation and pass the data

and results to the neighbor processors.

...................




‘‘‘‘‘‘‘‘

147

The functional diagram of the 'compare’ processor is shown in Fig-
ure 5.7(b) where a is the minimum distance computed so far with prim-
itive identifier - ¢, b is the distance just computed and d is the
corresponding primitive identifier input externally. The internal struc-
ture and data movement are shown in Figure 5.8(b). Each 'compare’
processor contains an ALU, two 8-bit registers B, D and two 16-bit regis-

ters A, C. The micro-operations are as follows.

(1) (a) Transfer partial sum (serially) into register A from C of the

above PE.
(b) Transfer partial sum (serially) into register C from the left PE.

(c) Transfer primitive identifier (serially) into register B from D of
the above PE.

(d) Transfer primitive identifier (serially) into register D from

external input.
() E~A-C.
(3) Ha < c then {C « A; D « B}.

Step (1) takes 16 cycles to complete, step (2) takes 1 and step (3)
takes 1. These three steps take 18 cycles, which is 1 cycle shorter than
the 'compute’ processor, therefore the 'compare’ processor must be
idle for one cycle in order to synchronize with the 'compute’ processor.
The 'compare’ processors compare the current distaace coming from
the left with the distance coming from the above, and pass the smaller
one to the lower processor. Primitive identifiers are fed in from the
right in a similar format as those for data streams. The identifier
streams should be delayed for l{+k—1 unit times so that the first

identifier i, enters the first '‘compare’ processor at the same time as

Py AA__LA_._;J




148

IR
L R

a5 320
it

Ty T -
AR LU LA S A
AR SRR A & v
VLR L I T

Compute processor Compare processor

e ¢
——
P
lap—— )

8 —— —— b b — j—ood
y u y Z
b<«a+ |x — u ifa<b
y <X {y<b;z~d}
vVeu | else )

{y<a;z<c}

(a) (b)

Figure 5.7 Data flow and operations of each (a) 'compute’ processor and
(b) 'compare’ processor.




T T YT
AN -,'4f./'.'~
R R S

egad, LT oY

A

El
LAY

OIS §F 4 ZEOL
B Tt Le 4 2 .~

. la

T

s % e 2000 200 Jnd
L o7, L
IZ-I. S,
. . R ] .
.
.

149
unknown reference
vector vector
component 4 component
X B
4
Y
ALU
3
partial new.
sum - A —p partial
U sum
unknown I reference
vector vector
component (a) component
minimum old
sum id
> A " B
T )
A A
ALU E
T external
new R id
sum C D
minimum 1 l
sum new

(b)

Figure 5.8 Internal structure and register transfer of (a) 'compute’ and

(L 'compare’ processors.

id

S SN YO YU P W S Y Y




[ Reen i Chan B

L e e e e reaaca mecaaaececainiiecive Sacinaciba I CINA SRS S L A _{
ST T e ' T . LT e e e e T A e .

- LT R s

150

the distance between [z}, =3, ..., 2] and [m}, md, ..., m}!]. In order
to assign right identifier to right distance, the identifier streams must

be arranged as shown in Figure 5.8.

With a uniprocessor, the primitive recognition procedure of one
feature vector will take Ixk computations and {—1 comparisons in our
present example. With the processor array of Figure 5.6, the primitive
recognition procedure of a single feature vector needs I(xk+1 unit
times. However, a processor array is not designed for the processing of
one single datum, instead, it is for a stream of data. In that case, a new
result will come out every 2 unit times in Figure 5.6. Given | reference
vectors and a feature vectors of dimension &£, the array processor will
take 2 gnit times to get one result in steady state, while a uniprocessor
takes O(Ixk) time to complete the computation. The speedup is
Ixk /2. In Figure 5.6, the results contain both the minimum distance

and the primitive identifier, therefore no other processing is required.

Primitive recognizer is essentially a vector pattern matcher.
Therefore it can be used in many other applications, and can be used

indepent of feature extraction and string matching.

5.4 VLSI Architectures for String atching
Based on Levenshtiein Distance

Nonnumeric computation has becomme more important and
demanded more hardware algorithms, i.e., algorithms specially
designed for hardware implementiations, and architectures recently
due to the increasing applications in artificial intelligence, database,

information retrieval, language translation, paliern recognition, ete.,




''''''''''

151

One of the most important categories in nonnumeric computation is
string pattern matching. Character string matching is very important
in information retrieval and dictionary look up (Hall and Dowling, 1980).
The problem of string pattern matching can generally be classified into
two kinds. We call them exact matching and approximate matching.
For exact matcing, a single string is matched against a set of strings,
usually this particular string is embeded as a substring of the reference
strings. Hardware algorithms for exact matching has been proposed by
Mukhopadhyay (1979), where the test pattern resides in an array of
cells and the reference text is broadcasted to all the cells simultane-
ously character by character. Foster and Kung (1980) designed a VLSI
chip for exact pattern matching with wild card capability, where the
test pattern enters from one end and the reference text enters from
the other end of the linear array. By constrast, for approximate
matching, we want to find a string from a finite set of strings which
approximately matches the test string. Certainly we will also find the
string which exactly matches the test string if it does exist. A good sur-
vey of approximate string matching can be found in Hall and Dowling
(19880). This section concentrates exclusively on approximate match-
ing. Approximate string matching is based on the idea of insertion,
deletion and substitution of terminal symbols. An application example
of approximate string matching which cannot be performed by exact
string matching is the string clustering problems, for example, in Lu
and Fu (1978). Wagner and Fischer (1974) proposed a dynamic pro-
gramming method for the computation. Okuda, Tanaka and Kasai
(1978) proposed an algorithm and hardware implementation for garbled

word recognition based on the Levenshiein Metric. We propose in this




P T e Bre A e b e reom o - T
.

— 'r. TV
g N

152

section a VLSI architecture for approximate string matching. The dis-

tance measure is (weighted) Levenshtein distance using dynamic pro-
gramming method. Although it is using lhe minimuam-distance cri-
terion in deterministic cases; it can be easily modified to the

maximum-likelihood criterion in probabilistic cases.

Chiang and Fu (1979) studied several parallel architectures,
namely, SIMD, dedicated SIMD and MIMD, {for string and tree distance
computation. Each node on the same diagonal of the dynamic program-
ming matrix is computed simultaneously. The time complexity of these
specific parallel systems is O(n+m), where n and m are the lengthes

of the two strings under comparison. Our system, differs from theirs in

that we use a systolic array, i.e., a square array of PE’s as in Ackland, et
al. (1981) and pipelined data flow for the computation. Therefore we
can obtain the results at a constant rate, i.e., one result after each unit

time.

It is well-known that Levenshtein distance can be computed by
dynamic programming. Therefore, it can be implemented by parallel
processing on VLSI architectures. In this case, parallel computation
and pipeline data flow are combined to process continuously a large
amount of data at a very high speed. The dynamic programming algo-
rithm recursively computes the optimal path from point (1,1) to (m,n)
based on its subpaths. In dynamic time warping, there are many slope
constraints for selecting subpaths. Ackland et al. (1981) chose the sim-

plest constraint, i.e.,

Si; = Dy ; + min {S;-y,5,5:-1,5-1.5,j-1

A e s e i Se s a2 Attt ata e im e et atadt el o sas s




.'Y Fw T ey

3L e
[ERPURE T
‘

=
T
4
r—

.l-l iP‘.A

......... T Py

153

where D;; = |z;-y;|, z;, y; are feature vectors, S;; is partial sum at
point (1,7). It will be much difficult to implement if “hey chose other

slope constraints.

5.4.1 Levenshtein Distance

For Levenshtein distance, there are also many variations. The ori-
ginal Levenshtein distance where each insertion, deletion and substitu-
tion is counted as one error transformation is the easist to implement.
We have developed a processor array for this computation. A portion of
the dynamic programming diagram and its corresponding processor

array is given in Figure 5.9. Each processor computes ¢he partial sum

S‘i,j = min Si—l,j-1+s(a'ivbj)
Sijoi41

where S(a;,b;) = 1if a; # b;; S(a;,b;) = 0 otherwise. The computation
can be divided into three stages. The procedures are as follows.
Stage !
(1) (a) Transfer (serially) partial sum S;_; ;-; into D frcm the lower PE.
(b) Transfer (serially) primitive a; into X from the lower PE.
(c) Transfer (serially) primitive b; into Y from the left PE.

(d) Compare (serially) X with Y; output V=0if X =Y, V = 1 other-

wise.




154
S(i—l,j) D S(i’j)
b; s/ |
S(i'l 7j'1) S(ivj'l )
ai
(a)
Pio1 1 I P;;
bj ey i
- ]
3 1
L: — > et
P Pitj1 | 1 Pim
:
(b)

Figure 5.9 (a) Portions of dynamic programming diagram and (b)
corresponding processor array.




1565

(2) DD+ V.

Stage 2

(1) (a) Transfer (serially) partial sum S;_, ; into B from the left PE.
(b) Transfer (serially) partial sum S; ;_, into C from the lower PE.
(c) Send (serially) partial sum S;_,; to D of the above PE.
(d) Compare (serially) B with C, A « min(B, C).
(e) Send (serailly) contents of X to X of the above PE.
(f) Send (serially) contents of Y to Y of the right PE.

(2) A~ A+1.

(3) Compare (parallelly) A with D, R « min(A, D).

Stage 3

(1) (a) Send (serially) partial sum R to B of the left PE.
(b) Send (serially) partial sum R to C of the above PE.

Stage 1 takes 17 clock cycles to complete (16 for step (1) and 1 for step
(2)); stage 2 takes 18 (16 for step (1), 1 for step (2) and 1 for step (3)),
and stage 3 takes 16. Figure 5.10 shows the internal structure and the
operations of processor element F; ; at stage 1, 2 and 3. Each PE con-
tains a set of registers, an ALU, a control unit and some other combina-
tional logic. Registers A, B, C, D, V and R are general-purpose registers
which are 16-bit long and connected to the ALU. Registers X and Y afe
8-bit long, which are used to store primitives. In our seismic case, we
have 13 primitives; therefore, 4 bits should be enoigh to represent
them. In fact, 4 bits, which have 16 combinations, should be sufficient
for many practical applications. However, in order to make our system

more flexible and compatible with other systems which use ASCII code,

L o NP S VY N SN SRS S SO SR D S




156

Stage 1
Primitive
a‘i - X S(ai,bj)
v
b; oY ’
§ +
Si—l,j-l > D
Partial L
Sum
Stage 2 & 3
A
Partial X
Sums Y
S . < A
i,j~1 > C IT
-

Figure 5.10 Internal structure and register transfer of PE P, ; at stage 1,

2 and 3.




EP ZERE,

157

we let registers X and Y hold 8 bits. This generalization will be able to
recognize character strings where each character is in ASCII code, for

example, A = '01000001’, B = '01000010’, C ='01000011", and so forth.

Figure 5.11 shows the data movement between 4 neighboring PE’s
shown in Figure 5.9. All the processors at the same diagonal performs
the same computation as shown in Figure 5.11 and 5.12(a). This format
will move forward one step every 18 clock cycles. Since each string
only needs three diagonals at any time, the other processors can be
used to compute distances of other strings. Therefore, data flow can be
pipelined as shown in Figure 5.12(b). If we are matcling a test string
against a number of reference strings, the distance between the test
string and the first reference string will emerge after px18 clock
cycles, where p is the number of diagonals in the array. After that,
there will be one string distance coming out every 3x18 = 54 clock
cycles. Since stage 1 and 3 have no conflict, they can be ovelapped, i.e.,
one diagonal of the array can be used to perform stage 3 of one string
and stage 1 of the next string at the same time, to increase the

throughput.

The structure of processor array and data flow are shown in Figure
5.13. The reference strings enter from the left; the t2st string enters
from the bottom. The test string must repeat itself continuously in
order to compare with all the reference strings. Both test and refer-
ence strings must be properly skewed and separated as shown in Figure
5.13 so that they will arrive at the right processors at the right time.
The bookkeeping and selection of minimum distance can be done by a
special-purpose processor or the host computer. One practical prob-

lem is about the dimension of the processor array. The number of rows

P Brcsiom i s 2 DU SO SR e o PP Y S S U i . AR A ¥ X-A“_A_u_‘_-_‘_,A,-;_,J

—




‘S, Hd UsoMm)}aq juslisAoul vjeg 11°C 2dndiyg

PR UM S W Ve

B

A B M e B

W T w T wCT Y T T T T e e o T

patl
-

158

jea]
S

]

[+

73385

PR Th P ST W, R

L

N
e T e T
s*mn"na _»




L/ rSraalle pide 7o
RANEN i IR R A
et RS KRR AL

.-.’r‘..-r O
PR ALY
A PO s
Lt Zetelets

v

-----

4 it Bty
L4
s st
¢ s
o)

...................

...............

158

(b)

......

Figure 5.12 Processors at the same diagonal perform the same opera-
tion; three diagonals are required for one string (a), and strings can be
pipelined (b).

W PR D W N LY.




Figure 5.13 Processor array and data movement for computing Levensh-
tein distance.




P PR | FEPRE. Y Y atlia el e atia Z s m .moada —— e P P

161

can be set to the maximum length of the reference strings. Since the
length of the test string is unknown, the number of column can be set
arbitrarily. If a test string exceeds the array size, it should be handled
by the host computer or preprocessor. Because the interruption of the
regular computation pattern in a VLSI array will greatly reduce its
efficiency. This situation can be kept to minimum by selecting a
reasonablly large array size. A shorter string will be padded out with

blank to make it equal to the array dimension.

Suppose both the reference and the test strings have length (.
With a uniprocessor, the matching process for one unknown string will
take O({x!) unit operations. With the array processor, it only takes 3

unit times.

5.4.2 Weighted Levenshtein Distances

Since a weighted Levenshtein distance is usually more favorable in
practical application, we now propose a VLSI architeciore for its com-
putation. The major problem here is t.o' store all the weights in each
processor, which must be easy to implement and fast for access. For-
tunately, a programmable logic array (PLA) can be used (Mead and Con-
way, 1980). It is a special type of read-only memory, and easy to imple-
menl in a VLSI system. A simple example will illustrate how a PLA
works. Figure 5.14 shows a simple weights table and its PLA implemen-
tation. A PLA consists of two parts, the left part is called the AND
plane, the right part is called the OR plane. Input lines A, B have the
combinations (0,0), (0,1), (1,0), (1,1) which represent the entries of the
weight table. The output XYZ indicate the values of the entries, which

range from 0 to 7. The circles indicate connections. Since we only have




R

- B
b . 1
p .w .,
b D :
v... DN w= et 8 "
= PO O e r-1--1--1--11 .mu |
. X ©C O o — . — m ....
. N ‘
nan - m
g % AT [ > E |
r_.. O _ = ‘,
- % s :
RN 3 i
r... o [o)
v 6 -“Ivl
) © 3
—‘ -q n
- L A
. - ™~ 3 | e .L.M. .M
= ! g .
B (=) - W < _q o
" L o .
..w. © — ©
y H ]
< 2




163

13 primitives, 4 bits will be enough for discrimination. We take the 4
least-significant bits (LSB) from the primitives for our internal compu-
tation, for example, @ = '0001', b = '0010', ¢ = '0011', and so forth. We
need more bits for recognition of character strings. Figure 5.15 shows
the PLA implementation of weight table for substitution, insertion and
deletion in our seismic case. There is an input register to the AND-
plane and an output register from the OR-plane; both are 8-bit long.
Register X contains primitive ‘e’, and register Y contains primitive ‘6’;
(@, b) is the entry of the weight table. Here the symbols X, Y, A and B
are registers which should not be confused with those in Figure 5.14.
The pair (X = a, Y = b) represents the substitution of 'd' for 'a’. The
pair (X = a, Y = 0000) represents the deletion of ‘a’. The pair (X = 0000,
Y = b) means the insertion of 'd’. The access time is very fast, only two
clock cycles; one is needed for input register, the other is for output

register.

Except for the weight table, the computation procedure is similar
to the previous one. The internal structure of the PE's is given in Fig-
ure 5.16. Each PE has an ALU, a PLA (with registers Q and S), a control
unit, two 8-bit registers X, Y and three 18-bit registers B, C, and D.
Register Z contains constant ‘0000’ as symbol A. The data movement is
similar to that in Figure 5.11.

Stage 1

(1) (a) Transfer (serially) partial sum S;_, -, into D from the lower PE.

(b) Transfer (serially) primitive a; into X from the lower PE.

........




Tal

e

R L TPUL NP JUOTN SIS RPN, B9 N NSO PN - SN S S

primitives

clock
phase 1

164
primitives
a b c d e m
] A= 0000
a= 0001
b b= 0010
(weights are normalized c= 0011
¢ to between 0 and 255) d= 0100
d e= 0101
m= 1101
m
j———
AND plane : OR plane
x ¥
Y ! clock
_.nww i 7 <~ phase 2
3 {
_L_-11 1 sscee l
a b
X Y Outputs (Weights)
Input

(primitive pair)

Figure 5.15 A PLA implementation of the weight table for scismic recog-

nition.

mew e alaiatl fealalalelal A




.........

165

PLA
(Weight table) ALU

} R
Q S

Lwt. 2o ek LRt RN
LR L

<
ol
||

Control

N
O

P ol ol ba g
o o .

Figure 5.16 Internal structure of the PE for weighted string distance
computation.

P ) T e g e - PO AN At 0 N ae i “H ol T e dh el i o B TR W W T W e T L T e e e .




166

(c) Transfer (serially) primitive b; into Y from the left PE.
(2) Load (parallelly) the 4 LSB of X and Y into Q, output. S(a;,b;)in S.
(3) ComputeD « D + S.
(4) Load (parallelly) the 4 LSB of X and Z into Q, outpul D(g;) in S.
Stage 2
(1) (a) Transfer (serially) partial sum S;_;; into B from the left PE.
(b) Transfer (serially) partial sum S; ;_; into C from the lower PE.
(c) Send (serially) partial sum S;_;; to D of the above PE.
(d) Send (serailly) contents of X to X of the above PE.
(e) Send (serially) contents of Y to Y of the right PE.
(2) (a) Compute B « B + S.
(b) Load (parallelly) the 4 LSB of Z and Y into Q, ouiput /(b;) in S.
(3) (a) Compute C « C + S.
(b) Compute B « min(B, D).
(4) Compute D « min(B, C).
Stage 3
(1) (a) Send (serially) partial sum in D to B of the right PE.
(b) Send (serially) partial sum in D to C of the above PE.

In Stage 1, Step (1) takes 18 cycles ((a), (b) and (¢) operate in parallel),
Step (2) takes 3 cycles (1 for loading, 2 for PLA reading), step (3) takes
1 cycle and Step (4) takes 3 cycles (same as Step (2)). In Stage 2, Step
(1) takes 18 cycles, Step (2) takes 3 cycles ((a), (b) operate in parallel),
Step (3) takes 2 cycles and Step (4) takes 2 cycles. Stage 3 takes 18
cycles ((a) and (b) both take 16 cycles and can be executed in parallel).




167

’ Therefore, Stage 1 takes 23 cyrles, Stage 2 takes 23 cycles, and Stage 3
takes 16 cycles. As usual, stage 3 can be overlapped with stage 1 to
save processing time. Due to the weight computation, this system

takes longer time than the previous one.

5.5 Simulations and Performance Verification

Simulations have been performed for the three systolic arrays:

feature extraction array, primitive recognition array and string match-

-
DAL

ing array. The flow charts for the simulations are given in Appendix A.
The same seismic data as those used in Section 3.5 are tested in the
simulations. The results of the simulations are exactly the same as
those of the sequential computer in Section 3.5. Therefore the design
of the systolic arrays are correct and the operations are as expected.
Step-by-step simulation results using sample seismic waveforms are
given in Appendix B. The computation time in our sirnulation is shown
in Table 5.1. The computation time using a sequential computer is also
given for comparison. it is noted that the listed comp atation time is an

average and approximate time which should be used for comparison

only. Suppose that we are dealing with a large amout. of data. Similar
- to the definition of speedup for multioperation computer in Kuck

(1978), we define the theoretical speedup (TS) of a (svstolic) processor

array as

time interval between consecutive
TS = results using a sequential computar

Ltime interval between consecutive
results using a processor array




168

gurmyojey
%02 499 L9V G100 400 fuing
uotrjiudooay
%68 G'6l Ll 900°0 10 SATlWILId
uonoelxy
%001 09 09 S00°0 £0 amiea
(&EED) ("03s)
ajrey dnpeadg dnpaadg sfeade [§TA wypIoTYy
dnpsadg [eonjadoayy 1eay pajemuig rerquanbag

(Furays auo juareamnbs 1o prooag

oTuIsTas auo 10§ ate suorjeinduwoo [[y) ‘o1jed dnpaads pue sdnpaads
[eo1}a109Y3} ‘sdnpaads [ead ‘Jaynduros [erjusanbas Fuisn sfedae [STA 10§
aum uorjenduroo pajemuils ‘wyjlrodie jerjusnbas jo suI} uorpenduio))

1'S W14Vl




169

Therefore the TS for featﬁre extraction is 60/1 = 60, for primitive
recognition is 39/2 = 19.5 and for string matching is 20/3 = 6.67. The
numerators are the numbers of operations for getting one result using
a sequential computer, and the denominators are the time intervals
between consecutive results for VLSI arrays as shown in the previous
sections. Note that the TS for string matching in our experiment is
20/3 = 6.67 instead of 20x20/3 = 133. This is because we only consider
substitution errors, therefore the number of operations is proportional
to string length, i.e., 20. If insertion and deletion errors are to be con-
sidered, then the whole dynamic programming matrix» as shown in Fig-
ure 2.1 should be considered. In the seismic recognition problem the

size of the matrix is 20%20.

The real speedup in our simulations for feature extraction is
approximately the same as the maximum theoretical speedup. This is
due to the simple structure and data flow of the linearly connected sys-
tolic array. The real speedup (17.4) for primitive recognition is slightly
less than the TS (19.5), which is 89% of the TS. The reason for this is the
increasing complexity of array structure and data flow. More time is
spent on data movement. The real speedup (4.67) for string matching
is also less than the TS (6.67), which is 70% of Lthe TS. This is because
the array structure and data flow are even more complicated. The
increasing complexity can be seen from the the desigrs in previous sec-
tions. The theoretical speedup is the upper bound where the real
speedup in simulation is a function of the computations performed and

the underlying architectures.

The simulations are performed on a sequential computer (VAX

11/760). In order Lo compare the simulation results vith the results in




2 PR

-
)
»

;oY

< ‘,‘AA.—T'—.— A .
e et R L
Lo e PR I

170

Chapter IIIl we use the same high level languages (C, Fortran and Pas-
cal). Therefore, there are many overhead in language translation and
program execution. These are some of the reasons for low speedup.
Another reason is data movement which can be performed in parallel
with the computation in VLSI arrays, but can not be done in a sequen-
tial computer. One can not accurately simulate the VLSI system even
using an assembly language. Since most systolic arrays are hardwired,
i.e., unprogrammable, there is no instruction deccding or memory
fetch and storage for each instruction. Besides, the parallelism can not
be fully simulated on a sequential computer. The real computation

speeds of the proposed VLSI arrays when fabricated should stay close to

| the analytical results as shown in the previous sections, i.e., 1 unit time

for feature extraction, 2 unit times for primitive recognition and 3 unit

times for string matcing using WLD.

We would like to consider some problems about actual implementa-
tion and give some examples about the periormance of our proposed
system. In Section 5.2 we assumed that the length of “he linear systolic
array is the same as the number of points in each segment. Although a
linear array can be expanded easily, it is sometimes necessary to use
small array to process data of larger size. For example, in the seismic
recognition problem, the number of points in each segment is 60. We
can.use a linear array consisting of 80 PE's, or we can use less PE’s, for
example, 20 PE's. The implementation using 20 PE's is shown in Figure
5.17, where the data points in each segment are folded into three rows.
This will take three unit times to compute the features for each seg-
ment. Suppose there are 20 PE’s with machine cycle 200 ns, i.hen the

time required for feature extraction of 2,000 segments (after it reaches

A et et




171
Xgo
2 2 2 2 1
X40 X4 X22 | X3 X40
2 2 2 1 1
X20 X2l x2 X43 [ EXEXXEXNT XN ] xzo
0 xf | xb | xds :
1 1 1 1 :
X40 X4 X992 | X3 :
1 1 1
X20 Xoi X9
0 x{
32
[ 4 S

‘71
*

|cr

—
HN

e

#2

Quwn

11

#3

LI Baath Sedi B Jie

Quw

Figure 5.17 An implementation of feature extraction with 20 PE’'s and 60

points in each segment.

e




172

steady-state) is equal to 3 X 18 x 2000 x 200 ns = 21.8 ms. The time for
reaching steady-state is 20 unit times, which is equal to 20 x 18 cycles
%X 200 ns/cycle = 72 us. Since the processing speed of feature extrac-
tion (18 cycles) is faster than that of primitive recognition (19 cycles),
the output of the former can be used directly by the latter. Recall that
the input data for primitive recognition are interleaved by one space
(Figure 5.3(b)). The feature vector of the next segmeant is not needed
until after 2 x 19 cycles = 38 cycles. Therefore 30 PE's can be used for
feature extraction and produce a feature vector every 2 x 18 cycles =
36 cycles. Because 30 PE’s take 2 unit times to produce a result and
each unit time is equal to 18 cycles. These two operations can be exe-

cuted in parallel to save a half of the total processing time.

Consider string matching using Levenshtein distance, the com-
parison of one test string with each reference string takes 3 x 18 x 200
ns = 10.8 us. With one hundred reference strings, it takes 1.08 ms to
classify each test string, and each test string is execated sequentially.
Using a systolic array it is possible to make real-time string matching.
Our system can match approximately 90,000 strings per second (10.8

us for one string).

We assume in the previous discussion that all strings, test and
reference, have the same length. This is not true in many other appli-
cations. Reference strings are different in length; d mensions of pro-
cessor array can not fit exactly the string size. It is required to make
processor array larger than the string size and pad the string with
blank at the end. If we let the weight of insertion, deletion and substi-
tution of blanks be zero, then we can solve the problem of length

variety and still maintain the regular, synchronous cata fiow pattern.

A s et S " s rmiotbars e e e T s DA e B d B oS Rml mSal bl a Aa et a® alnlalal o

—vv




L L e o m i e e B R . L s A ANt B o s I s b e s e el T e AU A S W T
LR St et St S g dny e R e e i S B N L.

173

Long strings and larger array size do not degrade the steady-state
throughput. As usual, results can be obtained every 3x18 = 54 cycles.
It only takes longer time, i.e., px18 cycles where p is the number of
diagonals, to reach steady-siate. Usually the time to reach steady-

state is negligible compared with the total processing Lime.

The system bus as shown in Figure 5.1 is similar to the Unibus of
DEC PDP-11 (Kuck, 1978). The Unibus has a maximum data rate of
4x107 bits/sec operating in an interlocked way, i.e., the sender waits
until Lhe receiver acknowledges receipt of a word before sending
another word. In our experiment, each seismic record has 1200 points,
and each point is coded into a 16-bit binary number. Therefore, each
seismic record needs 16x1200 = 19200 bits of storage. It is easy to see
that the systemm bus can transmit one seismic record from disc to
special-purpose processor in 0.48 ms. However, the typical operating
speed of magnetic disc is from 2.4x10°% bits/sec to 1.2x107 bits/sec
(Stone, 1980). Therefore the actual time for sending a seismic record
from disc to special-purpose processor is from 80 ms to 1.6 ms. The
output from the special-purpose processor is the classification results,
which use one word (16 bits) for each seismic record to indicate class

membership. The transmission time is 0.4 us for one record.

5.6 Concluding Remarks

We have proposed special-purpbse array processors for seismic sig-
nal classification, which can be attached to a general-purpose computer
as shown in Figure 5.1. The host computer can retrieve any intermedi-

ate data from a special-purpose processor and store them in its own

. P P
« . - . e o ST e e
T PRI -




‘‘‘‘‘‘‘‘

174

storage, as well as send data to any memory unit of the special-purpose
processor. For example, the host computer can retrieve and store the
siring representation of the signals for display or fcr later use. The
host computer can also use any one of the systolic arrays, for example,

feature extraction array, only.

The design correctness and speedup have been verified by simula-
tions in Section 5.5. From the simulation results it is safe to predict
t:l': that the real speedup of the fabricated VLSI processor arrays will be
close to the theoretical speedup. Computer-aided design has greatly
;:ﬁ:j reduce the design cost (Swerling, 1982). The cost/per ormance ratio of

special-purpose processors will eventually be justified.

b Recently, VLSI architectures have been applied to syntactic pattern
- recognition and to implement parallel compulation. Guibas, et al.

(1979) proposed two VLSI arrays for the implementation of combina-

torial algorithms, one is for a subset of dynemic programming prob-

lems, i.e., optimal parenthesization problems which include context-

free language recognition, the other is for transitive closure problems
which include finite-state language recognition. Based on the array
h structure of Guibas, et al.,, Chu and Fu (1981) proposed VLSI architec-

Ty tures for finite-state language recognition and context-free language

recognition using CYK's algorithm. Chiang and Fu (1982) also proposed
a VLS] systems for context-free language recogniticn using Earley's
algorithm. Ackland et al. (1981) developed a VLSI systems to imple-
ment dynamic time warping for spoken word recognition. Our string
matcher can be applied to any problem where the Levenshtein distance
computation is required. It can be used for string matching in our

seismic recognition, for character string matching in information




Ty LT PRI

A URAR

B
PR PR

175

retrieval (Hall and Dowling, 1980) or for pattern matching in shape.
analysis if the object can be represented by a string, ,for example,
using chain codes (see Fu, 1982). Our primitive recognizer can also be
applied to any minimum-distance recognition problem and vector pat-

tern matching.

......




AN W < T N o T O P L IO R
R

N

~-.
C..

&N 176

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

We have studied the application of syntactic pattern recognition to
seismic signal classification and proposed special-purpose VLSI archi-
tectures for the implementation. Our studies concentrate on the
waveforms where shape information is not important or useful, like
seismic signals. EEG and speech signals have similar characteristic as
seismic signal. Chapter I defines the problem of study, outlines the
approach to the problem and gives relevent literature survey. Chapter
II discusses string similarity (distance) measures and recognition pro-
cedures. String distances have been clessified into two categor.es: gen-
eral string dfst.ances which are based on the concept of insertion, dele-
tion and substitution transformations and special string distances.
General string distances are further classified into a hierarchy of four
levels. Symmetric property of string distance has also been discussed.
Recognition can be carried out by either nearest-neighbor decision rule
or error-correcting parsing. We use a modified Earley's parsing algo-
rithm which does not require an expanded grammar and is able to use

syrumetric distance.

.........




R I TR ST A
A P AP e

..

177

Chapter III demonstrates the experimental results of seismic
discrimination and damage assesment. If shape is not the major
feature, pattern segmentation is often simpler. We only need to con-
sider fixed-length segmentation. When shape information is the dom-
inant feature, pattern segmentation is usually associated with primitive
recognition. Generally speaking, a fixed-length segmentation is easier
to perform; a variable-length segmentation is more efficient in
representation. However, a variable-length segmentation usually takes
more time in determining the optimal boundary. Furthermore, a
variable-length segmentation sometimes starts from fixed-length seg-
mentation and then merges or splits based on a preset criterion. In

general, we are in favor of fixed-length segmentation pruvided a proper

length can be easily selected. Feature selection is problem-dependent;

therefore we did not emphasize on this subject. Primitive recognition
is our first major topic in practical applications. Without any knowledge
about the data, we use a clustering procedure to find the optimal
number of clusters. Twe criteria, increment of merge distance and
pseudo F-statistic (PFS), have been used to select cluster number and

they show identical results. Finite-state grammars are inferred from

- the training patterns using the k-tail inference algorithm. Unless the

patterns are really generated by a finite-state grammar, chosing small
values of k usually worsens the classification result. Our experiments
show that uneven merge of states makes the inferred grammar perform-
ing poorly in recognition. When'the inferred grammar is the canonical
grammar, the recognition results of using NN rule and ECP are the
same. According to our experiment, the NN rule takes however much

less computer time than ECP. A modified dynamic time-warping

R S RN . N e T e e T S ‘_l
VAT O S SR TR T VAT TRl Tk S Cogl R UL JUrS- S S S W S ST VLA TN SV ST T Sl S SIS N Noll SR W SIS VSIS S Sl W Gy PRI .1




B e,

178

IRARRANA
PN

systemm has been used to measure the distance between the seismic
waveforms of the building during a strong earthquake. This measure-

ment can be used for damage assesment.

Chapter IV introduces an attributed grammar and parsing for sig-
nal recognition in general, and seismic recognition in particular. If we
use a canonical grammar as the pattern grammar, it usually contains a
large number of production rules and nonterminal symbols. Using
attributes will increase the descriptive power of the grammar as well as
simplify the syntactic rules of the grammar. We use a length attribute
for seismic grammar, which reduces more than 90% of the number of
productions and nonterminals from the nonattributed grammar. Attri-

buted seismic grammars also increase the recognition speed while

maintaining the same recognition accuracy.

. Chapter V contains VLSI architectures for string mat-~hing, primi-
X tive recognition and feature extraction. Although some special-purpose
chips have been developed for signal recognition, for example, spoken

word recognition, we are making our systems as general as possible.

g This is to say our string matcher and primitive recognizer with the

exception of feature extractor can be applied to any other pattern
recognition problem. They employ parallel processing and pipeline
datla flow so that very fast throughput can be achieved. This improve-

ment of speed makes real-time pattern recognition possible.

P RPN W W M WP ULAT SAY SN PUJL SULE WP UK GREP U U . . PP SO




179

6.2 Conclusions

Syntactic pattern recognition has been pointed out as a promising
approach to seismic classification (Chen, 1978). While quite a few sta-
tistical approaches have been proposed, we are the first to apply syn-
tactic approaches to this problem. With two simple features, our
approaches attain better results (91% correct rate) than most of the
existing statistical approaches (Tjostheim, 1975; Sarna and Stark,
1980). Our approaches also differ from the syntactic methods in
Chapter I in the treatment of primitive selection and grammar con-
struction. A clustering procedure along with tw» decision criteria con-
stitute the primitive selection algorithm in our approach, while heuris-
tic approaches were used by others, e.g., in Stockman, et al., (1976).
Our pattern grammars are inferred from training samples, but most
pattern grammars for signal analysis are constructed manually. An
atiributed grammar for the seismic application is proposed, which
could significantly reduce the grammar size and increase the'recogni-
tion speed. Finally, VLSI architectures are proposed for seismic
classification, which include feature extraction, primitive recognition
and string matching using (weighted) Levenshtein distance. Our string
matcher is different from many contemparory implementations, i.e.,
exacl matching (e.g., in Foster and Kung, 1980), which are not suitable
for pattern recognition applications because of the noise and other
problems, for example, segmentation and primitive recognitior. errors;
the detail is discussed in chapter V. The computational results can be
produced at a constant rate, i.e., constant time complexity, when using
our VLSI architectures with pipelined data flow. Although these VLSI

systems are developed {or seismic classification. they can be applied to

PR M T VO U S S U A SR WA N V- U R P S MERPLIP (RSP PR L W U Wi CEPO. WOy Wy

S 2 A a b A




b

4

180

other similar applications.

6.3 Recommendations

Future works about syntactic seismic signal recognition can be
divided into two parts, one is algorithm development, the other is high-
speed implementation. (This can also be applied Lo other signal recog-
nition problems.) In algorithm development, the possibility cf using
variable-length segmentation should be explored. Stochastic grammars
and parsing should be applied when probabilistic information is avail-
able. The inclusion of semantic information in pattern primitive is
another approach (Tsai and Fu, 1980). A conventional pattern
representation contains only syntactic symbols. A typical speech pat-
tern for dynamic time warping contains only numerical infomation. A
combination of these two will have both syntactic and semantic infor-
mation. The distance computation and parsing of such patterns can be
separated into syntactic deformation and semantic deformation, and
different weights can be assigned to these two deformations. Feature
extraction also needs further studies; linear predictive coeflicients and

features Irom power spectrum are good candidates.

After the algorithms are developed, they can often be implemented
on a parallel architecture, particularly on VLSI architectures. In our
string matcher, a glhbal path constraint can be imposed, therefore
reduce the number of processors. Those special-purpose chips can be
arranged in such a way that the output of one chip is used directly as
the input of another chip. Of course, this can happen only wher all the

chips have the same processing speed; otherwise, bufiers or lulches are

L e ST VIS = o




AD-A124 398

UNCLRSSIFIED

A SYNTRCTIC APPROACH AND VLSI HRCHITECTURES FOR SEISNIC 3/3
SIGNAL CLASSIFICATIONCU) PURDUE UNIV LAFAYETTE IN

SCHOOL OF ELECTRICAL ENGINEERING H LIU ET AL. JAN 83
NOBB14-79-C-0574 F/G 8/11




.0
1.8

. MICROCOPY RESOLUTION TEST CHART

-

' NATIONAL BUREAU OF STANDARDS-1963-A

LR




181

required between the chips. Although these chips are for special pur-
poses, flexibility should also be considered. The more flexible the chips
are, the more applications they have; therefore, makes their manufac-
turing cheaper. This combination of algorithm development and tech-
nology advancz will make many pattern recognition applications practi-

cal in both cost and speed.

The application of attributed grammar using length attribpute to
speech recognition should also be investigated. Suppose two strings
z =aaaaaabbbcce and y=aaaabbcc represent different utterances of
the same word. If we use string matching and NNR for classification,
then d(z,y) # 0 regardless that we use the conventional Levensh-
tein distance or weighted Levenshtein distance. Ackroyd (1980) sug-
gested a modified WLD which is computed by subtracting |{/-J|djp
from the WLD, where /, J are the lengths of the two strings respectively
and d;p is the weigth for insertion and deletion. Although this modified
WLD can make d(z,y) = 0, it will cause other problems, for example,
d(y.z) = 0 for z=aaa. The type 3 WLD proposed in Chapter 2 can solve
this problem by letting D(a,2) = /(a,a) = 0 for all @ € £. However,

there exists one drawback, i.e., there is no restriction on the number of
insertions or deletions. An ait.ibuted grammar using length attribute
can be used to solve this problems without side effects. For example, if
string = is the training sample, then the attributed grammar has pro-

duction S+ABC with inherited length attribute ({6,4}, {3,2}, {3,2}) for

ROAEY. - $ ARG

(4,B,C). This attributed grammar will accept both string z and y, but

not z.

RACAUNEEIS (5 § SN




......

[1]

(2]

(3]

[4]
(5]

(6]

[7]
(8]

(e]

[10]

(11]

182

LIST OF REFERENCES

Ackland, B., Weste, N. and Burr, D.J., 1981. "An integrated mul-
tiprocessing array for time warping pattern matching,” Proc. 8th
Annu. Symp. on Compul. Archit. May 12-14, Minneapolis, pp.
197-215.

Ackroyd, M. H., 1980. "Isolated word recognition using the
weighted Levenshtein distance,” IEEE Trans. Acous. Speech, Sig-
nal Processing, vol. ASSP-28, no. 2, pp. 243-244.

Aho, A.V. and Peterson, T.G., 1972. "A minimum distance error-
correcting parser for context-free languages,” SIAM J. Comput.,
vol. 1, no. 4, pp. 305-312. '

Aho, A.V. and Ullman, J.D., 1972. The Theory of Parsing, Transla-
tion and Compiling, Prentice-Hall, Inc., vol. 1, 542 pp.

Albus, J.E., 1977. "Electrocardiogram interpretation using a sto-
chastic finite state model,” in Syntactic Pattern Recognition
Application, ed. by Fu, K.S., Springer-Verlag, pp. 51-64.

Allen, R.V., 1978. "Automatic earthquake recognition and timing
from single traces,” Bull. Seismol. Soc. Amer., vol. 6P no. 5, pp.
1521-1532.

Anderson, K.R., 1978. "Automatic Analysis of Microearthquake Net-
work Data,” Geoezplor, vol. 16, pp. 159-175.

Atal, B.S. and Hanauer, S.L., 1971. "Speech analysis and synthesis
by linear prediction of the speech wave,” J. Acoust. Soc. 4m., vol.
50, no. 2, pp. 637-655.

Bath, M., 1977. Spectral Analysis in Geophysics, Elsevier, New
York, 563 pp.

Bath, M., 1979. Introduction fo Seismology, Birkhauser Berlag,
Boston, 428 pp.

Biermann, A.W. and Feldman, J.A., 1972. "On the synthesis of
finite-state machine,” IEEFE Trans. Comput., vol. C-21, pp. 592-
597. .

WP PSRN NP SR NP L z LR A e .Y : ta




PRt S P T
oo P I

SO AR

v
+

L B
LIS

T

v
s

2 P - DRSS

..............
............

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]

(22]

(23]

[24]

[25]

e et e e e
..............................................

..........................................

183

Blair, C. R., 1960. "A program for correcting spelling errors,”
Inform. Contr., vol. 3, pp. 60-67.

Bois, P., 1981. "Reservior recognition in petroleum prospection
considered as an application of close man-machine communica-
tion,” Proc. 2nd Int. Symp. on Comput. Aided Seismic Analysis
and Discrimination, North Dartmouth, Massachusetts, pp. 42-47.

Bolt, B.A., 1976. Nuclear Ezplosions and Earthquakes, The Parted
Veil., W. H. Freeman and Co., San Francisco, 309 pp.

Booth, T.L., 1967. Segquential Machines and Automate Theory,
Wiley, New York.

Bowen, B. A. and Brown, W. R., 1982. VLSI Systems Design For
Digital Signal Processing. Prentice-Hall, Inc., New Jersey.

Box, G.E.P. and Jenkins, G.M., 1976, Time Series Analysis - fore-
casting and control, Holden-Day Inc., San Francisco, 575 pp.

Carnahan, B., Luther, H. A. and VWilkes, J. O., 1969. Applied Numer-
ical Methods, John Wiley & Sons, Inc., New York.

Chen, C.H., 1978. "Seismic Pattern Recognition,” Geoezplor, vol.
16, no. 1/2, pp. 133-1486.

Chiang, Y. and Fu, K. S., 1981. "Parallel processing for d:stance
computation in syntactic pattern recognition,” Proc. IEEE
Workshop on CAPAIDM. Nov. 11-13, Hot Springs, VA.

Chiang, Y. and Fu, K. S., 1982. "A VLSI architecture for fast
context-free language recognition (Earley's algorithm),” 5rd Int.
Conf. Distributed Computing Systems. Oct. 12-15, Ft. Lauder-
dale, FL.

Chou, S.M. and Fu, K.S., 1975. "Transition networks for pattern
recognition,” Tech. Rept., TR-EE 75-39, Purdue Universiey, Indi-
ana.

Crespi-Reghizzi, S., 1971. “An effective model for grammar infer-
ence,"” Proc. IFIP Congress, Aug., Yugoslavia, pp. 524-529.

Crespi-Reghizzi, S., 1971. "Reduction of enumeration in grammar
acquisition,” Proc. 2nd Int. Joint conf. Artif. Intel., Sept. 1-3,
London, England, pp. 564-552.

Dahlman, O. and Israelson, H., 1977. Monitoring Underground
Nuclear Ezplosions, Llsevier Scientific Publishing Co., Amster-
dam, the Netherlands.

PN

e e L. L.




100.

[27] DeMori, R., 1977. “Syntactic recognition of speech patterns,” in
Syntactic Patlern Recognition Application, ed. by Fu, K.S.,
Springer-Verlag, New York, pp. 65-94.

[28] Duda, R.D. and Hart, P.E., 1973. Pattern Classification and Scene
Analysis, Wiley, New York, 482 pp.

[28] Earley, J., 1970. "An efficient context-free parsing algorithm,”
CACM vol. 13, pp. 94-102.

[30] Ehrich, R.W. and Foith, J.P.,, 1976. "Representation of random
waveforms by relational trees,” JEEE Trans. Comput., vol. C-25,
no. 7, pp.725-736.

[31] Flanagan, J.L., 1972. Speech Analysis, Synthesis and Perception,
2nd Ed., Springer-Verlag, New York.

[32] Foster, M. J. and Kung, H. T., 1980. "The desssign of special-
purpose VLSI chips,” Computer, vol. 13, no. 1, pp. 26-40.

[33] Fu, K.S., 1973. "Stochastic languages for picture analysis,” Com-
puter Graphics and Image Processing, vol. 2, pp. 433-453.

[34] Fu, K.S., 1877. "Error-correcting parsing for syntactic pattern
recognition,” in Data Structure, Computer Graphics and Patlern
Recognition, ed. by Klinger, A., et al.,, Acdemic Press, pp. 449-492.

[35] Fu, K.S., ed., 1877. Syntactic Pattern Recognition Application,
Springer-Verlag, New York.

[38] Fu, K.S., 1978. "Syntactic pattern recognition and its application
to signal processing,” Proceedings of the NATO Advanced Study
Institute on Pattern Recognition and Signel Processing, Series E,
Applied Science, no. 29, Sijthofl & Noordhoff International Publish-

o 184
. | [28] DeMori, R., 1972. "A descriptive technique for automatic speech
! recognition,” /EEE Trans. Audio Electroacoustic, AU-21, pp.89-

E

5 ers, The Netherland.

[ [37] Fu, K.S.,, 1982. Syntactic Pattern Recognition and Applications,
- Prentice-Hall, Inc., New Jersey, 596 pp.

};‘ [38] Fu, K.S. and Huang, T., 1872. "Stochastic grammars and
- languages,"” Intern. Journal of Comput. and Inform. Scti., vol. 1,
‘ no. 2, pp. 135-170.

” [39] Fu, K.S. and Booth, T.L., 1975. "Grammatical inference- introduc-
e tion and survey,” IEEE Trans. Syst., Man, Cybeirn., vol. SMC-5, no
- i, pp. 95-111, no. 4, pp. 409-423.

&

v

L]

&

.

-

n."“

p .

-

SRR Ny RIS el e e e Tl e




o AR
i : LSRN
. i W feate SN o
v. . PR .

o
Tl
'

T X ol gt

» .v._1 rSe-r
U "‘. .
v e

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

185

Fu, K.S. and Lu, S.Y., 1977. "A clustering procedure for syntactic
patterns," IEEE Trans. Sys., Man and Cybern, vol. SMC-7, no. 10,
pp. 734-742.

Fu, K.S. and Yao, J.T.P., 1979. "Pattern recognition and damage
assesment,” The ASCE EMD Specialty Conference Austin, Texas.

Fukunaga, K., 1972. Introduction to Statistical Pattern Recogni-
tion, Academic Press, New York.

Fukunaga, K. and Koontz, W.L.G., 1970. "A criterion and algorithm
for grouping data,” JEEE Trans. Comput., vol. C-18, pp. 917-923.

Fung, L.W. and Fu, K.S., 1975. "Stochastic syntactic decoding for
pattern classification," JEEE Trans. Comput., vol. C-24, pp. 662-
669.

Giese, D.A., Bourne, J.R. and Ward, J.W., 1978. "Syntactic analysis
of the electroencephalogram,” IEEE Tren. Syst., Man., Cybern.,
vol.9, no.8, pp.429-435.

Guibas, L. J., Kung, H. T. and Thompson, C. D., 1979. 'Direct VLSI
implementation of combinatorial algorithms,” Caltech Conf. on
VLSI, Jan., pp. 508-525.

Hall, P.A.V. and Dowling, G.R., 1980. "Approximate string match-
ing," ACM Comput. Surveys, vol. 12, no. 4, pp. 381-402.

Horowitz, S.L., 1975. "A syntactic algorithm for peak detection in
waveforms with applications to cardiography,” CACM, vol. 18, no.
S5, pp. 281-285.

Horowitz, S.L., 1977. "Peak recognition in waveforms," in Syntac-
tic Pattern Recognition Applicafion, ed. by Fu, K.S., Springer-
Verlag, pp. 31-49.

Hwang, K. and Cheng, Y. H., 1981. "Partioned matrix algcrithms
and VLSI structures for large scale matrix computations,” 5th
Symp. Comput. Arithmetic, May 18-19, Ann Arbor, Mich., pp. 222-
232.

Ishizuka, M., Fu., K.S. and Yao, J.T.P., 1981. "Inexact inference for
rule-based damage assesment of existing structure,” Tech. Rep.,
CE-STR-81-5, Purdue University, Indiana.

Joshi, A K., 1973. "Remarks on some aspects of language structure
and their relevance to pattern analysis,” Pattern Recognition, vol.
S, no. 4.

{nuth, D.E., 1968. "Semantics of context-free languages,” J. Math.
Sys. Theory, vol. 2, pp. 127-1486.




L

1

'

E)
»

.!
"
‘4

4
!

.
sa-a's

e sy
c' + 4
A

Ll

4

-w

."
l'

.,,
)

e g
o« s

-
PORATY:

du i 4 ikl

O UER

e, e IR

' ST o »
Lot ot ,

Yo s .'7 ! _.':" A
F AR LAY

'y

C B atil alie g - A AN ACL AU S 4
. -'-fn‘ ‘!“,.',‘ PR PO Y ",",‘,’.'."_
R . A R AT §

(54]

- [55]

[56]
[57]

(58]

(58]

(60]

[61]

(2]

[63]

{64]

[65]

(66]

(67]

188

Kuck, D. J., 1978. The Structure of Computers and Computa-
tions. John-Wiley and Sons, New York.

Kulkarni, A. V. and Yen, D. W. L., 1982. "Systolic processing and an
implementation for signal and image processing,” IEEE Trans.
Comput., vol. C-31, no. 10, pp. 1000-1009.

Kung, H.T., 1979. "Let's design algorithm for VLSI systems,"” Proc.
Caltech Conf. on VLSI, Jan., Pasadena, CA, pp. 65-90.

Kung, H. T., 1982. "Why systolic architectures ?" Computer, vol.
15, no. 1, pp. 37-46.

Lee, H.C. and Fu, K.S., 1972. "A stochastic syntax analysis pro-
cedure and its application to pattern classification,” IEEE Trans.
Comput., vol. C-21, pp. 660-666.

Lee, H.C. and Fu, K.S., 1972. "A syntactic pattern recognition sys-
tem with learning capability,” Proc. Int. Symp. Comput. and
Inform. Sct. Dec. 14-16, Miami Beach, Florida.

Lee, H.C. and Fu, K.S., 1972. "Stochastic linguistics for pattern
recognition,” Tech. Rep., TR-EE 72-17, Purdue Universiry, Lafay-
ette, Indiana. :

Levenshtein, V.I., 1966. "Binary codes capable of correcting dele-
tions, insertions, and reversals,” Sov. Phys. Dokl., vol. 10, pp.
707-710.

Lozano-Peiez, T., 1977. "Parsing Intensity Profile,” Computer
Graphics end Jmage Processing, vol. 6, pp. 43-60.

Lu, S.Y. and Fu, K.S., 1977. '"Stochastic error-correcting syntax
analysis for recognition of noisy patiern," IEEE Trans. Comput.,
vol. C-26, no. 12., pp.1268-1276.

Lu, SY. and Fu, K.S.,, 1978a. "A syntactic approach to texture
analysis," Computer Graphics and /mage Processing, vol. 7, no. 3,
pp. 303-330.

Lu, S.Y. and Fu, K.S., 1978b. "Error-correcting tree automata for
syntactic patiern recognition,” IEEE Trans. Comput., vo.. C-27,
Nov., pp. 1040-1053.

Lu, S.Y. and Fu, K.S., 1979. "Stochastic tree grammar inference
for texture analysis and discrimination,"” Computer Graphics and
Image Processing, vol. 9, pp. 234-245.

Lyon, G., 1974. "Syntax-directed least-error analysis for context-
free languages: a practical approach,” CACM, vol. 17, no. 1 pp. 3-
14.

LI G NI U AL VR S A U U . i U U UE . W PN e - O - PSP a .

A s



. B e L P "
A LN A LS RN

N
.‘b

-

.....

(e8]
(68]
[70]
(71]

[72]

{73]
(74]

[75]

[61]

[82)

187

Mead, C.A. and Conway, L.A., 1980. Introduction to VLSI Systems,
Addison-Wesley, 398 pp.

Miclet, L., 1880. "Regular inference with a tail-clustering method,"
IEEE Trans. Syst., Man., Cybern., vol. SMC-10, pp. 737-743.

Mottl’, V.V. and Muchnik, I.B., 1979. "Linguistic analysis of experi-
mental curves,” Proc. IEEE, vol. 87, no. 5, pp. 714-7386.

Mukhopadhyay, A., 1979. "Hardware algorithm for nonnumeric
computation,” JEEE Trans. Comput., vol. C-28, no. 6, pp.384-394.

Okuda, T, Tanaka, E and Kasai, T, 1976. "A method for the correc-
tion of garbled words based on the Levenshtein metric,” IEEE
Trans. Compul., vol. C-25, pp. 172-178.

Oppenheim, A.V., 1970. “"Speech spectrograms using the fast
fourier transform," IEEE Spectrum, vol. 7, pp. 57-62.

Oppenheim, A.V. and Schafer, R.W., 1975. Digital Signal Process-
ing, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Pavlidis, T., 1971. "Linguistic analysis of waveforms," in Software
Engineering, ed. by Tou, J. T., vol. 2, Acdemic, New Yor, pp.203-
225.

Pavlidis, T., 1973. "Waveform segmentation through functional
approximation,” IEEE Trans. Comput., vol. C-22, pp.689-697.

Pavlidis, T. and Horowitz, S.L., 1974. "Segmentation of plane
curves,”" IEEE Trans. Comput., vol. C-23, pp.860-870.

Reddy, D.R., ed., 1975. Speech Recognition, Acdemic Press, New
York.

Sakoe, H. and Chiba, S., 1978. "Dynamic programming algorithm
optimization for spoken word recognition,” IEEFE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-26, pp. 43-49.

Sandvin, O. and Tjostheim, D., 1978. "Multivariate autoregressive
representation of seismic P-wave signals with application to
short-period discrimination,” Bull. Seism. Soc. Am., vol. 68, pp.
735-7586.

Sankar, P.V. and Rosenfeld, A., 1979. "Hierarchical representation
of waveforms,” IEEE Trans. Patt. Analy. and Mach. Intel., vol.
PAMI-1, no. 1, pp. 73-79.

Sarna C.S. and Stark H., 1980. "Pattern recognition of waveforms
using modern spectral estimation techniques and its application
Lo earthquake / explosion data,” Proc. 5th Intl. Conf. on Pattern
Recognition, Dec. 1-4, Miami Beach, FL.




--------------------------------------------------
.............

188

“ [83] Schafer, R.W. and Rabiner, L.R., 1975. "Digital representation of
speech signal,” Proc. IEEE, vol. 63, pp. 662-677.

[84] Stewart, S.W., 1977. "Real-time detection and location c¢f local
. seismic events in central California,” Bull. Seism. Soc. Amn., vol.
87, pp. 433-452.

[85] Stockman, G., Kanel, L.N. and Kyle, M.C., 1976. "Structural pattern
recognition of carotid pulse waves using a general waveforrn pars-
ing system,"” CACM, vol. 19, no. 12, pp. 688-695.

[86] Stone, H. S., ed., 1980. Introduction to Computer Architzcture.
Science Research Associates, Inc., Chicago.

[87] Swerling, S. 1982. "Computer-aided engineering,” /EEE Spectrum,
vol. 19, no. 11, pp. 37-41.

[88] Tanaka, E. and Kasai, T., 1972. "A correcting method of garbled
languages using ordered key letters,” Trans Inst. Elec. Commun.
Eng. (Japan), vol. 55-D, pp. 363-370.

[89] Tai, J.W. and Fu, K.S., 1981. "Semantic syntax-directed translation
for ipctorial pattern recognition,” Tech. Rep., TR-EE 81-38, Pur-
due University.

[90] Tai, J. W. and Fu, K. S., 1882. "Inference of a class of CFPG by
means of semantic rules,” ntl J. of Comput. end Inf. Sci., vol.
11, no. 1, pp. 1-23.

[91] Tang. G.Y. and Huang, T.S., 1979. "A syntactic-semantic approach
to image understanding and creation,” IEEE Trans. Patt. Anal.
Mach. Intel., vol. PAMI-1.

[92] Thomason, M.G. and Gonzalez, R.C., 1975. "Error detection and
classification in syntactic pattern structures,” IEEE Trans. Com-
put., vol. C-24.

[93] Thomason, M.G. and Gonzalez, R.C., 1975. "Syntactic recognition of
} imperfectly specified patterns,” IEEE Trans. Comput., vol. C-24,
. no. 1, pp. 93-95.

[94] Tjostheim, D., 1975. "Autoregressive representation of seismic P-
wave signals with an application to the problem of short-period
discriminants,” Geophys. J. R. Astr. Soc., vol. 43, pp. 269-291.

[95] Tjostheim, D., 1977. "Recognition of waveforms using autoregres-
sive feature extraction,” JEEE Trans. Comput., vol. C-26, pp. 268-
270.

[96] Tjostheim, D., 1978. "Improved seismic discrimination using pat-
tern recognition," Phys. Earth Planet, Inter., vol. 16, pp. 85-108.

[

!"-.
k-
..
v

NEIRT |
P




NI |

NS P

boudi g, ik AR i Sy e

[87]

(98]

(9]

..........................

189

Tjostheim, D. and Sandvin, O., 1979. "Multivariate Autoregressive
Feature Extraction and the Recognition of Multichannel
Waveforms,” IEEE Trans. Patt. Analys. and Mach. Intell., vol.
PAMI-1, no. 1, pp.80-86.

Tomek, 1., 1975. "More on Piecewise Linear Approximation,” Com-
put. Biomed. Kes., vol. 8, pp.568-572.

Tsai, W.H. and Fu, K.S., 19798. "A pattern deformation model and
Bayes error-correcting recognition system,” /EFEE Trans. Sys.
Man and Cyber., vol. SMC-9, no. 12,pp. 745-756.

[100] Tsai, W.H. and- Fu, K.S., 1880. "Attributed grammar-a tool for

combing syntactic and statistical approach to pattern recogni-
tion," IEEE Trans. Sys. Man and Cyber., vol. SMC-10, no. 12, pp.
873-885.

[101] Vogel, M.A. and Wong, A.K.C., 1978. "PFS Clustering Method,”" IEEE

Trans. Patt. Analy. Mach. Intel., vol. PAMI-1, no. 3, pp. 237-245.

[102] Wagner, R.A., 1974. "Order-n correction of regular languages,”

CACM, vol. 17, no. 5, pp. 265-268.

[103] Wagner, R.A. and Fischer, M.J., 1974. "The string-to-string correc-

tion problem,” J. ACM vol. 21, no. 1, pp. 168-178.

[104] Yao, J.T.P., 1979. "Damage assessment and reliability evaluation of

existing structures,” Eng. Struct., vol. 1, pp. 245-251.

[105] You, K.C., 1878. "Syniactic shape recognition using attributed

grammars,"” Tech. Rep., TR-EE 78-38, Purdue University, Indiana.

[106] You, K.C. and Fu, K.S., 1979. "A syntactic approach to shape

recognition using attributed grammar,” IEEE Trans. Sys. Man
and Cyber., vol. SMC-9, no. 6, pp. 334-345.




string matching.

190

APPENDIX A

FLOW CHARTS FOR THE SIMULATIONS

Appendix A gives the flow charts for the simulations in Section 5.5.
Figure A.1 is the flow chart for feature extraction, Figure A.2 is the flow

chart for primitive recognition, and Figure A.3 is the flow chart for

[ W™
N T «

T S R N
L W N

B N R Y N I T T et Lt
. I I B "-‘-'.'A‘_.“.‘-';-‘.'_.'.‘.'- Sl

PRI .




-------------

...............................

191

START

i=1,1=60

rege(i)=0
regs(i)=0
regb(i)=0

\
read ith data
— item regd(i)

regs(i)=regs(i)
+ abs(regd(i))

regs(i+1)=regs(i)
rege(i+1)=rege(i)
regb(i+1)=regd(i)

l

i=i+1

3

write rege(1),

regs(l)

Figure A.1 Flow chart for the simulation of feature extraction.




...................................................

192

| SN
(-

|
_/i=$\Yes
el |

regx(i,j)=regx(i-1,j) regx(i,j) =ftrv(j)
¥
regu(i,j)=refv(i,})

No

rega(i,j) =regai,j-1) rega(i,j)=

rega(i,j)=rega(i,j)
(regx(i,j)-regu(i,j))” |~

i=i+1 J—Toed=on

o mam v
Me. bei, fet, 0,
L' LI EO

b= Yes

rege(i) =rega(i,j)

g

Figure A.2 Flow chart for the simulation of primitive recognition.




SRS R e T N e Tt e e e
PR D R TR - RN e A
oo te e Ye Ye Ta T R T e s T T

193

L

regar(i)=regc(i-1)

rege(i)=rega(i,2)

regb(i)=regd(i-1)
regd(i)=idx(i)

rege(i)=rega(i,2)
regd(i)=idx(i)

rege(i)=regar(i)
regd(i)=regb(i)

 J

= isi+1 |

write regd(13)

Figure A.2 (Continued)

................




194

regd. .
dist(S, 15,0

regh; i 1 ;= regd; ;
y
i=i+1

'

regd. .—regb
regd, !-regd bi- }

dist'(s ).

write regdy 20
b

I LT ﬁ' RIEE AR
. J Voo ! DALt .
H et LRSS

Figure A.3 Flow chart for the simulation of string matching.

T T TR T




-------

185

APPENDIX B

STEP-BY-STEP SIMULATION RESULTS

Table B.1 shows the intermediate results of feature extraction at
! : each time interval for the seismic signal shown in Figure B.1. The sym-
bols a,b,S,c,z,y and d are described in Figure 5.4(b). We use a
linearly-connected array of 60 processors. Therefore, for a specific
seismic segment, it takes 80 unit times to pass through the processor
array. Since the data can be pipelined, it takes only one umnit time to
extract the feature from each segment. The inputs to Table B.2 are the

outputs from Table B.1 after normalization. Table B.2 shows the inter-

mediate results of primitive recognition at each time interval. At time
n and 2n,n = 1, 2, ..., 13, the simulation executes '‘compute’ operation.
At time 3n, n = 1, 2, ..., 13, the simulation executes 'compere’ opera-
tion. The symbols a,z,u,b,y and v of ’'compute’ operation are
described in Figure 5.7(a). The symbols a.b,c,d, ¥y and z of 'compare’
operation are described in Figure 5.7(b). A specific feature vector
takes 39 unit times to pass through the processor array. Since the
feature vectors can be pipelined, it takes two unit times to assign a
primitive to each feature vector. The output 'g' from Table B.2 is the
4th symbol of the second string in Table B.3. Table B.3 shows the inter-
mediate results of string matching using the weighted Levenstein dis-
tance. Since only substitution errors are considered, the computation

is straightforward. The symbols z,v,d and & represent ithe repisters as

................................




........

196

described in Figure 5.16. A specific pair of strings take 39 unit times to

pass through the processor array. Since the strings can be pipelined, it
takes 3 unit times to compute the distance between an unknown and a

reference string. The recognition results will not be known until we

compare against all the (100) reference strings.

AN - EaraOR
Sttt ey tortLtLla L




197

c

SN

:

P, .

Figure B.1 Seismic segment (80 points) used in the simulation to gen-
erate intermediate results of Table B.1 and Table B.2.

. - A . . . . . . “u Y AR - e o e e e N RPN I Sy PR YOy e .
PRI R el S M T . NP I Tl TR, S SRS SR U ST W WO Weiv SELHr S S W3 ¥

‘
A




........

The intermediate results of feature extraction at each

198

TABLE B.1

time interval for the seismic segment shown in Figure B.1

t=1
1=2
t=3
t=4
t=5
t=86
t=7
t=8
t=9
t=10
t=11

a = -0.732877
X = -0,732877

a = -0.732877
x = -0.732877

-0.732875
-0.732875

a
X

-0.578423
-0.578423

a
X

a = -0.423971
x = -0.423971

a =-0.115067
x = -0.115067

a = 0.039385
x = 0.039385

a = 0.193837
x = 0.183837

a = 0.193837
X = 0.193837

a
w

-
-
-
P

0.348289
0.348289

a = 0.502741
x = 0.502741

b = 0.000000
y = 0.732877

b = -0.732877
y = 1.465755

b = -0.732877
y = 2.198629

b = -0.732875
y = 2.777052

b = -0.578423
y = 3.201023

b = -0.423971
y = 3.316090

b = -0.115087
y = 3.355475

b = 0.039385
y = 3.549313

b = 0.193837
y = 3.743150

b = 0.193837
y = 4.091439

b = 0.348289
y = 4.594181

S = 0.732877
d=0

S = 3.201023
d=0

S = 3.316080

S = 3.3556475
d=1

S = 3.549313
d=1
S = 3.743150
d=1
S = 4.081438
d=1

(]
i
Qo




I a0C Ak et M S b M At e SRt Rt

t=12
t =13
t=14
t=15
t=186
t=17
t=18
t=19
t=20
t=21
t=22
t=23
t=24
t=25
t=26

a=0.657193
X = 0.657193

a=0.811646
x = 0.811646

a = 0.657193
X = 0.657193

a=0.811646
x = 0.811646

a = 0.811646
x = 0.811646

a=0.811646
x = 0.811646

a=0.811646
x = 0.811646

a=0.857193
x = 0.657193

a=0.657193
x = 0.657193

a=0.657183
x = 0.657193

a=0.657193
X = 0.657193

a=0.657193
x = 0.657193

a = 0.657183
x = 0.657193

a = 0.811646

x = 0.811646

a = 1.120550

.....

199

b = 0.502741
y =5.251374

b = 0.657183
y = 6.063020

b =0.811646
y = 6.720213

0.657193
7.531869

.811646
.343505

® o

.811646
.155150

0o

0.811646
9.966796

= 0.811646
= 10.623989

.657193
1.281182

0.657193
11.938375

= 0.657193
= 12.595569

= 0.657193
= 13.252762

.657193
3.909955

ni
o

o WU WU YWo <Wo YWUo Yo <YW WU W “wuo
nuy
— = O

= 0.657193
y= 14 721601

b =0.811646

................

S = 5.251374
d=1

S = 6.083020
d=1

S = 6.720213
d=1

S = 9.155150
d=1

S = 9.966796
d=1

S = 10.623989
d=1

S = 11.281182
d=1

S = 11.938375
d=1

S = 12.595568
d=1

S = 13.252762
d=1

S = 13.909955
d=1

S = 14.721601
d=1

15.642150

---------------



--------------------- REEAC NG AN IO PR SR SR A A A DY o
- 200
m x=1.120550 y=15.842150 d=1
-, t=27 a=1583906 b=1.120550 S =17.426056 c=1
- x=1.583906 y=17.426056 d=1
t=28 a=2.356166 b =15838068 S=19.782223 c=1
i x = 2.356166 y=19.782223 d=1
= t=29 a=3282878 b=2356166 S =23.065102 c=1
o x = 3.282878 y=23.065102 d=1
- =30 a=3.000687 b=23.282878 S =26.965788 c=1
b x = 3.900687 y=26.965788 d=1
:':Iﬁf t=381 a=3437330 b=3.900687 S =30.403118 c=1
- x =3.437330 y=30.403118 d=1
E t=32 a=1275002 b=3.437330 S=31.678120 c=1
2 x = 1.275002 y=131.678120 d=1
r?;';i t=33 a=-2.122046 b = 1.275002 S =33.801084 c=1
o X =-2.122946 y =33.801084 d=2
F t=34 a=-5884246 b=-2.122946 S =239.785309 c=2
& x = -5.984246 y=39.785309 d =2
- 1=35 a=-8.918835 b=-5984246 S =48.704144 c=2
x=-8.918835 y=48.704144 d=2
P {=36 a=-10.000000 b =-8.918835 S =58.704144 c=2
- x = -10.000000 y =58.704144 d =2
E;;Z t=37 a=-9.227739 b =-10.000000 S =87.931885 c=2
'h'i x=-9.227739 y=67.931885 d=2
=38 a=-6.447603 b=-9.227739 S =74.3794868 c=2
: X =-6.447603 y=74379486 d=2
- '
- t=39 a=-2.122046 b =-6.447603 S =78.502434 c=2
= x=-2.122946 y=176.50243¢ d=2
e
N t=40 a=2.201714 b=-2.122046 S =78.704147 c=2
o 3z = R2.201714 y = 78.704147 d =3




t =42

t=43

=45
t =46
t =47
t =48
t =49
t =50
t =51
t =52
t = 53

t =54

A e M AT, LN
- LY . - - - LT Y .
\n'l"-ﬁ.'.?-‘.'_.*.'..‘; e

IO RS PO IR R

AR S N R G R T P L A

a=6.371919
X = 6.371919

a = 8.997603
x = 8.997603

a = 8.769864
X = 9.769864

a = 9.306508
X = 9.306508

a = 8.070891
X = 8.070891

a = 6.526371
X = 6.526371

a = 4.672948
X = 4.672946

a = 2.356166
X = 2.356166

a = -0.732875
x = -0.732675

a=-3.821918
x =-3.821918

a = -8.910959
X = -6.910959

a = -8.764383
X = -8.764383

a = -8.918835
x = -8.918835

a = -8.146575
X = -8.146575

.........
.....

201
b =2.201714
y = 85.076065
b = 6.371919
y = 94.073669
b = 8.997603

y = 103.843536

b = 9.769864
y = 113.150047

b = 9.306508
y = 121.220940

b = # 070891
y = 127.747314

b = 6.526371
y = 132.420258

b = 4.672946
y = 134.776428

b = 2.356168
y = 135.509308

b = -0.732875
y = 139.331223

b = -3.821918
y = 146.242188

b = -6.910959
y = 155.006577

b = -8.764383
y = 163.925415

b = -8.918835
y = 172.071991

PR A
i T A

............
~~~~~~~~~
LI v .

S = 85.076085

d=3

S = 94.073669

d=3

S = 103.843538
d=3

S = 113.150047
d=3

S = 121.220940
d=3

S =127.747314
d=3

S = 132.420258
d=3

S = 134.776428
d=3

S = 135.509308
d=4

S = 139.331223
d=4

S = 146.2421838
d=4

S = 155.006577
d=4

S = 163.925415
d=4

S =172.071991
d=4

c=3
c=3
c=3
c=3
c=3
c=3
c=3
c=3
c=3
c=4
c=4
c=4
c=4
c=4

. t = 55
33.51 t = 56
t =57
t =58
. t = 59
t = 60

a = -7.065411
X =-7.065411

a = -5.9842486
X = -5.984246

a = -4.903082
X = -4.903082

a = -3.887466
x = -3.667466

a =-1.814041
x = -1.814041

a = 0.183837
x = 0.193837

.......

......

....................

202

b = -8.148575
y = 179.137405

b = -7.0685411
y = 185.121658

b = -5.984246
y = 180.024734

- b = -4,903082

y = 193.692200

b
¥y

-3.667466
185.506241

b =-1.814041
y = 1985.700073

78.137405

A wm
o

1
4
185.121658
4

o w
n#

90.024734

nn
B -

93.692200

(s TRY]
nu
oo

195.508241
4

95.700073

o

1
5

LA AP

l’# l-," "
b i

?‘. Sl AT
PAF VA g

o

after norrnalization.

a = .000
b = 2.426

a = 2.426
b = 458.711

Fﬁi t=1
i
2

a = trerersens

y = 458.711

a = .000
b = 12.232

a=12.232
b = 452.920

a =458.711
y = 452.920

.000
.000

a
b

.000
468.287

a
b
a = 452.920
y = 452.920

...........................
.......
.........

203

TABLE B.2

X =-.161
y =-.161

X = 19.252
y = 19.252

b = 458.711
z - 'a'

X =-.161
y =-.161

X = 19.252
y = 19.252

b = 452.920
z = lbl

x=-161
y =-.161

x = 19.252
y = 19.252

b = 468.287

z='bv

=-161
y =-.161

= 19.252
y = 19.252

I

0
0
s

(o]
1]
&

-.180
-.180

[
It n

-2.387
-2.387

o
!
<

-1.228
-1.229

=
o

v

u = .,987
v = .,987

........................

The intermediate results of primitivelrecognition at
each time interval for the feature vector from Table B.1

d=vb|

t=12 a=452.920 b=334.762 ¢ ="'b’ d='d
.y = 334.762 z="d
t=13 a=.000 =-,161 u = .487
b =.394 y =-.161 v = 467
t=14 a=.394 X = 19.252 u = 1.049
b = 331.763 y = 19.2562 v = 1.048
t=15 a = 334.762 b=331.763 c="'d' d="e'
y = 331.763 z="'e
t=16 a=.000 Xx=-161 u = .427
b = .345 y=-.161 v =.427
t=17 a=.345 x = 19.252 u=.114
b = 366.632 y = 19.252 v=.114
t=18 a=331.763 b=366.632 c ="'e' d="{1
y = 331.763 z="'e
t=19 a=.000 x=-161 u = -.407
b = .061 y =-.161 v = -.407
t=20 a=.061 X = 19.262 u=1.284
b = 322.939 y = 19.252 v=1.284
- t=21 a=331.763 b=322938 c='e d="g
y = 322.939 z="'g'
K-.
5 t=22 a=.000 X = -.161 u =-.321
:::.;. b = .026 y =-.161 v =-321
a t=23 a=.026 X=19.252 u=.440
::.'7 b = 353.928 y =19.252 v = .440
: - t=24 a=322939 b=353928 c='g d="h’
o : y = 322.939 z="'g
t=25 a=.000 x=-161 u=1.431
b = 2.5633 =-.1861 v = 1.431

.. I ———

205
t=26 a=2.533 X = 19.252 u=.169
b = 366.713 y = 19.252 = .169
t=27 a=322038 b=366713 c='g d="1
. y = 322.939 z="'g'
-
t=28 a=.000 x = -.161 u = -.307
! b =.021 y =-.161 v =-.307
[t=29 a=.021 x=19.252 u=-.573
[b = 393.089 y=19.252 v =-573
.
@ t=30 a=322.939 b=393.088 c='g d="y
3 y = 322.939 z="g
& t=31 a=.000 X = -.161 u = 1.486
L b=2"710 y =-.161 v = 1.486
h t=32 a=2710 X = 19.252 u=-.940
g b = 410.457 y=19.252 v =-.940
t=33 a=322839 b =410457 c='g d="x’
h y = 322.939 z="'g'
0 t=34 a=.000 x=-.161 u=-1414
e b = 1.570 y =-.161 v=-1.414
t=35 a=1.570 x = 19.2562 u=-.256
b = 382.141 y=19.252 v =-256
t =38 a=322939 b=382.141 c="'¢g d=""
y = 322.939 z="'g
t=37 a=.000 x=-.161 u = .477
b = .406 y =-.181 v =477
t=38 a=.406 =19.252 u=-.757
b = 400.778 y=19.252 v =-757
t=39 a=322.939 b = 400778 c='g’ d='m'
y = 322.939 z="g

208

TABLE B.3

The intermediate results of string matching
at each time interval between strings 'acag

hfijjmjfmmkmjjjm' and 'mklgifdifhffm
killibb'. The output d = 5.742 is the distance
between these two strings.

t=1 x ='a’ y='m' d=0.485

t=2 x="'c¢ y="m' b =0.485

t=3 x='¢" y='k" d=0.900
t=4 x='a’" y='k" b=0.9800
t=5 x='a y="'T d = 1.253
t=6 x='g y="'r b =1.263

~~~~~~~~~




..................................

t=17 x='§ y="'1{ d = 2.654
t=18 x='m' y='f b = 2.654
t=19 x='m’ y='h d =2.924
t=20 x='7 y='" b=2924
t=21 x=' y='f d=3.113
t=22 x='7 y="'f b=3.113
t=23 x='1 y="'f d =3.113
t=24 x='m y='T b=3.113
t=25 x='m’ y='m' d=23.113
t=26 x=m' y='m b=83.113
t=27 x='m' y='k d = 3.306
t=28 x='k y='k" b=3.306
t=29 x='k y="{ d = 3.515

t=30 x='m' y='i b =3.515

t=31 «x

]

'm' y='l d = 3.882
t=3 x="'} y="'T" b = 3.882 l
t=33 x="7 y="'1 d = 4.099 |
t=34 x="' y="'l b = 4.099

t=35 x='§ y="'1 d = 4.454
t=36 x="'§ y="{ b = 4.454
t=37 x=7y y='b d=5173

t=39 x='m' y='b d =5.742







